Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214920120> ?p ?o ?g. }
- W4214920120 endingPage "360" @default.
- W4214920120 startingPage "360" @default.
- W4214920120 abstract "Background and Objectives: Traditional assessment of the readiness for the weaning from the mechanical ventilator (MV) needs respiratory parameters in a spontaneous breath. Exempted from the MV disconnecting and manual measurements of weaning parameters, a prediction model based on parameters from MV and electronic medical records (EMRs) may help the assessment before spontaneous breath trials. The study aimed to develop prediction models using machine learning techniques with parameters from the ventilator and EMRs for predicting successful ventilator mode shifting in the medical intensive care unit. Materials and Methods: A retrospective analysis of 1483 adult patients with mechanical ventilators for acute respiratory failure in three medical intensive care units between April 2015 and October 2017 was conducted by machine learning techniques to establish the predicting models. The input candidate parameters included ventilator setting and measurements, patients' demographics, arterial blood gas, laboratory results, and vital signs. Several classification algorithms were evaluated to fit the models, including Lasso Regression, Ridge Regression, Elastic Net, Random Forest, Extreme Gradient Boosting (XGBoost), Support Vector Machine, and Artificial Neural Network according to the area under the Receiver Operating Characteristic curves (AUROC). Results: Two models were built to predict the success shifting from full to partial support ventilation (WPMV model) or from partial support to the T-piece trial (sSBT model). In total, 3 MV and 13 nonpulmonary features were selected for the WPMV model with the XGBoost algorithm. The sSBT model was built with 8 MV and 4 nonpulmonary features with the Random Forest algorithm. The AUROC of the WPMV model and sSBT model were 0.76 and 0.79, respectively. Conclusions: The weaning predictions using machine learning and parameters from MV and EMRs have acceptable performance. Without manual measurements, a decision-making system would be feasible for the continuous prediction of mode shifting when the novel models process real-time data from MV and EMRs." @default.
- W4214920120 created "2022-03-05" @default.
- W4214920120 creator A5008270889 @default.
- W4214920120 creator A5026530661 @default.
- W4214920120 creator A5032567048 @default.
- W4214920120 creator A5038781571 @default.
- W4214920120 creator A5044136164 @default.
- W4214920120 creator A5046648197 @default.
- W4214920120 creator A5059454187 @default.
- W4214920120 date "2022-03-01" @default.
- W4214920120 modified "2023-09-27" @default.
- W4214920120 title "The Feasibility of a Machine Learning Approach in Predicting Successful Ventilator Mode Shifting for Adult Patients in the Medical Intensive Care Unit" @default.
- W4214920120 cites W101081755 @default.
- W4214920120 cites W1968060670 @default.
- W4214920120 cites W1989934341 @default.
- W4214920120 cites W1993843698 @default.
- W4214920120 cites W1996690080 @default.
- W4214920120 cites W2028168390 @default.
- W4214920120 cites W2029003882 @default.
- W4214920120 cites W2074351157 @default.
- W4214920120 cites W2093360836 @default.
- W4214920120 cites W2113081761 @default.
- W4214920120 cites W2120499593 @default.
- W4214920120 cites W2139965461 @default.
- W4214920120 cites W2140771005 @default.
- W4214920120 cites W2142104245 @default.
- W4214920120 cites W2149913077 @default.
- W4214920120 cites W2154846928 @default.
- W4214920120 cites W2169675374 @default.
- W4214920120 cites W2178549406 @default.
- W4214920120 cites W2390874189 @default.
- W4214920120 cites W2520124172 @default.
- W4214920120 cites W2904040889 @default.
- W4214920120 cites W2911964244 @default.
- W4214920120 cites W2977355038 @default.
- W4214920120 doi "https://doi.org/10.3390/medicina58030360" @default.
- W4214920120 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35334536" @default.
- W4214920120 hasPublicationYear "2022" @default.
- W4214920120 type Work @default.
- W4214920120 citedByCount "3" @default.
- W4214920120 countsByYear W42149201202022 @default.
- W4214920120 countsByYear W42149201202023 @default.
- W4214920120 crossrefType "journal-article" @default.
- W4214920120 hasAuthorship W4214920120A5008270889 @default.
- W4214920120 hasAuthorship W4214920120A5026530661 @default.
- W4214920120 hasAuthorship W4214920120A5032567048 @default.
- W4214920120 hasAuthorship W4214920120A5038781571 @default.
- W4214920120 hasAuthorship W4214920120A5044136164 @default.
- W4214920120 hasAuthorship W4214920120A5046648197 @default.
- W4214920120 hasAuthorship W4214920120A5059454187 @default.
- W4214920120 hasBestOaLocation W42149201201 @default.
- W4214920120 hasConcept C119857082 @default.
- W4214920120 hasConcept C12267149 @default.
- W4214920120 hasConcept C126322002 @default.
- W4214920120 hasConcept C154945302 @default.
- W4214920120 hasConcept C169258074 @default.
- W4214920120 hasConcept C177713679 @default.
- W4214920120 hasConcept C194828623 @default.
- W4214920120 hasConcept C2776376669 @default.
- W4214920120 hasConcept C2777080012 @default.
- W4214920120 hasConcept C2778584172 @default.
- W4214920120 hasConcept C2987404301 @default.
- W4214920120 hasConcept C41008148 @default.
- W4214920120 hasConcept C50644808 @default.
- W4214920120 hasConcept C58471807 @default.
- W4214920120 hasConcept C70153297 @default.
- W4214920120 hasConcept C71924100 @default.
- W4214920120 hasConceptScore W4214920120C119857082 @default.
- W4214920120 hasConceptScore W4214920120C12267149 @default.
- W4214920120 hasConceptScore W4214920120C126322002 @default.
- W4214920120 hasConceptScore W4214920120C154945302 @default.
- W4214920120 hasConceptScore W4214920120C169258074 @default.
- W4214920120 hasConceptScore W4214920120C177713679 @default.
- W4214920120 hasConceptScore W4214920120C194828623 @default.
- W4214920120 hasConceptScore W4214920120C2776376669 @default.
- W4214920120 hasConceptScore W4214920120C2777080012 @default.
- W4214920120 hasConceptScore W4214920120C2778584172 @default.
- W4214920120 hasConceptScore W4214920120C2987404301 @default.
- W4214920120 hasConceptScore W4214920120C41008148 @default.
- W4214920120 hasConceptScore W4214920120C50644808 @default.
- W4214920120 hasConceptScore W4214920120C58471807 @default.
- W4214920120 hasConceptScore W4214920120C70153297 @default.
- W4214920120 hasConceptScore W4214920120C71924100 @default.
- W4214920120 hasIssue "3" @default.
- W4214920120 hasLocation W42149201201 @default.
- W4214920120 hasLocation W42149201202 @default.
- W4214920120 hasLocation W42149201203 @default.
- W4214920120 hasOpenAccess W4214920120 @default.
- W4214920120 hasPrimaryLocation W42149201201 @default.
- W4214920120 hasRelatedWork W2050845046 @default.
- W4214920120 hasRelatedWork W2088679442 @default.
- W4214920120 hasRelatedWork W2605687582 @default.
- W4214920120 hasRelatedWork W2911455822 @default.
- W4214920120 hasRelatedWork W2987667774 @default.
- W4214920120 hasRelatedWork W3195168932 @default.
- W4214920120 hasRelatedWork W4281616679 @default.
- W4214920120 hasRelatedWork W4293525103 @default.
- W4214920120 hasRelatedWork W4308191010 @default.