Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214924157> ?p ?o ?g. }
- W4214924157 endingPage "118241" @default.
- W4214924157 startingPage "118241" @default.
- W4214924157 abstract "Information regarding water clarity at large spatiotemporal scales is critical for understanding comprehensive changes in the water quality and status of ecosystems. Previous studies have suggested that satellite observation is an effective means of obtaining such information. However, a reliable model for accurately mapping the water clarity of global lakes (reservoirs) is still lacking due to the high optical complexity of lake waters. In this study, by using gated recurrent units (GRU) layers instead of full-connected layers from Artificial Neural Networks (ANNs) to capture the efficient sequence information of in-situ datasets, we propose a novel and transferrable hybrid deep-learning-based recurrent model (DGRN) to map the water clarity of global lakes with Landsat 8 Operational Land Imager (OLI) images. We trained and further validated the model using 1260 pairs of in-situ measured water clarity and surface reflectance of Landsat 8 OLI images with Google Earth Engine. The model was subsequently utilized to construct the global pattern of temporal and spatial changes in water clarity (lake area>10 km2) from 2014 to 2020. The results show that the model can estimate water clarity with good performance (R2 = 0.84, MAE = 0.55, RMSE = 0.83, MAPE = 45.13%). The multi-year average of water clarity for global lakes (16,475 lakes) ranged from 0.0004 to 9.51 m, with an average value of 1.88 ± 1.24 m. Compared to the lake area, elevation, discharge, residence time, and the ratio of area to depth, water depth was the most important factor that determined the global spatial distribution pattern of water clarity. Water clarity of 15,840 global lakes between 2014 and 2020 remained stable (P ≥ 0.05); while there was a significant increase in 243 lakes (P < 0.05) and a decrease in 392 lakes (P < 0.05). However, water clarity in 2020 (COVID-19 period) showed a significant increase in most global lakes, especially in China and Canada, suggesting that the worldwide lockdown strategy due to COVID-19 might have improved water quality, espically water clarity, dueto the apparent reduction of anthropogenic activities." @default.
- W4214924157 created "2022-03-05" @default.
- W4214924157 creator A5005483290 @default.
- W4214924157 creator A5030446424 @default.
- W4214924157 creator A5036516611 @default.
- W4214924157 creator A5040222229 @default.
- W4214924157 creator A5058855467 @default.
- W4214924157 creator A5071585078 @default.
- W4214924157 creator A5081716971 @default.
- W4214924157 creator A5090217932 @default.
- W4214924157 date "2022-05-01" @default.
- W4214924157 modified "2023-10-14" @default.
- W4214924157 title "Water clarity mapping of global lakes using a novel hybrid deep-learning-based recurrent model with Landsat OLI images" @default.
- W4214924157 cites W1149925075 @default.
- W4214924157 cites W1498849780 @default.
- W4214924157 cites W1847188688 @default.
- W4214924157 cites W1970537838 @default.
- W4214924157 cites W1983850847 @default.
- W4214924157 cites W1995811252 @default.
- W4214924157 cites W2000641788 @default.
- W4214924157 cites W2003979757 @default.
- W4214924157 cites W2005494734 @default.
- W4214924157 cites W2016613000 @default.
- W4214924157 cites W2019900416 @default.
- W4214924157 cites W2020366472 @default.
- W4214924157 cites W2033275608 @default.
- W4214924157 cites W2037675284 @default.
- W4214924157 cites W2037997462 @default.
- W4214924157 cites W2044120844 @default.
- W4214924157 cites W2058212068 @default.
- W4214924157 cites W2061693063 @default.
- W4214924157 cites W2068012975 @default.
- W4214924157 cites W2078860594 @default.
- W4214924157 cites W2094223189 @default.
- W4214924157 cites W2115408538 @default.
- W4214924157 cites W2121171476 @default.
- W4214924157 cites W2129935148 @default.
- W4214924157 cites W2138116293 @default.
- W4214924157 cites W2143282602 @default.
- W4214924157 cites W2153619838 @default.
- W4214924157 cites W2155982938 @default.
- W4214924157 cites W2173251738 @default.
- W4214924157 cites W2281658227 @default.
- W4214924157 cites W2370584049 @default.
- W4214924157 cites W2407789439 @default.
- W4214924157 cites W2463489071 @default.
- W4214924157 cites W2493203466 @default.
- W4214924157 cites W2560167313 @default.
- W4214924157 cites W2564545777 @default.
- W4214924157 cites W2725897987 @default.
- W4214924157 cites W2731008149 @default.
- W4214924157 cites W2784276984 @default.
- W4214924157 cites W2799363763 @default.
- W4214924157 cites W2858922160 @default.
- W4214924157 cites W2900276876 @default.
- W4214924157 cites W2904988921 @default.
- W4214924157 cites W2907369561 @default.
- W4214924157 cites W2912565681 @default.
- W4214924157 cites W2919358988 @default.
- W4214924157 cites W2921893165 @default.
- W4214924157 cites W2922123535 @default.
- W4214924157 cites W2928164210 @default.
- W4214924157 cites W2951506102 @default.
- W4214924157 cites W2964199361 @default.
- W4214924157 cites W2992271044 @default.
- W4214924157 cites W3001897055 @default.
- W4214924157 cites W3004623551 @default.
- W4214924157 cites W3007683185 @default.
- W4214924157 cites W3010069939 @default.
- W4214924157 cites W3010453174 @default.
- W4214924157 cites W3010781325 @default.
- W4214924157 cites W3013188135 @default.
- W4214924157 cites W3013594674 @default.
- W4214924157 cites W3014291895 @default.
- W4214924157 cites W3016472101 @default.
- W4214924157 cites W3020582030 @default.
- W4214924157 cites W3037289197 @default.
- W4214924157 cites W3038070845 @default.
- W4214924157 cites W3040818127 @default.
- W4214924157 cites W3040985572 @default.
- W4214924157 cites W3043791248 @default.
- W4214924157 cites W3082233703 @default.
- W4214924157 cites W3106865219 @default.
- W4214924157 cites W3121117209 @default.
- W4214924157 cites W3131324180 @default.
- W4214924157 cites W3153977456 @default.
- W4214924157 cites W3167900605 @default.
- W4214924157 cites W3168978656 @default.
- W4214924157 cites W3177432425 @default.
- W4214924157 cites W3180607063 @default.
- W4214924157 cites W3185586279 @default.
- W4214924157 cites W3189959651 @default.
- W4214924157 cites W3190145423 @default.
- W4214924157 cites W3209739954 @default.
- W4214924157 cites W4210501753 @default.
- W4214924157 cites W4211010233 @default.
- W4214924157 doi "https://doi.org/10.1016/j.watres.2022.118241" @default.
- W4214924157 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35259557" @default.