Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214924628> ?p ?o ?g. }
- W4214924628 endingPage "408" @default.
- W4214924628 startingPage "408" @default.
- W4214924628 abstract "In this paper, two different computationally inexpensive methods for nowcasting/data filling spatially varying meteorological variables (wind velocity components, specific humidity, and virtual potential temperature) covering scales ranging from 100 m to 5 km in regions marked by complex terrain are compared. Multivariable linear regression and artificial neural networks are used to predict micrometeorological variables at eight locations using the measurements from three nearby weather stations. The models are trained using data gathered from a system of eleven low-cost automated weather stations that were deployed in the Cadarache Valley of southeastern France from December 2016 to June 2017. The models are tested on two held-out periods of measurements of thermally-driven flow and synoptically forced flow. It is found that the models have statistically significant performance differences for the wind components during the synoptically driven flow period (p = 6.6 × 10−3 and p = 2.0 × 10−2 for U and V, respectively), but perform the same otherwise. These methods can be used to spatially fill gaps in micrometeorological datasets. Recommended future work should include statistically interpreting the predictive models and testing their capabilities on meteorological datasets from different locations." @default.
- W4214924628 created "2022-03-05" @default.
- W4214924628 creator A5000197801 @default.
- W4214924628 creator A5022533683 @default.
- W4214924628 creator A5022853922 @default.
- W4214924628 creator A5033106404 @default.
- W4214924628 creator A5047553593 @default.
- W4214924628 date "2022-03-02" @default.
- W4214924628 modified "2023-10-06" @default.
- W4214924628 title "Data Filling of Micrometeorological Variables in Complex Terrain for High-Resolution Nowcasting" @default.
- W4214924628 cites W1639445094 @default.
- W4214924628 cites W1966212788 @default.
- W4214924628 cites W1975645328 @default.
- W4214924628 cites W1986661504 @default.
- W4214924628 cites W1988669238 @default.
- W4214924628 cites W1989735370 @default.
- W4214924628 cites W2000805884 @default.
- W4214924628 cites W2003201814 @default.
- W4214924628 cites W2003366520 @default.
- W4214924628 cites W2011909934 @default.
- W4214924628 cites W2017000238 @default.
- W4214924628 cites W2018274339 @default.
- W4214924628 cites W2023298515 @default.
- W4214924628 cites W2031640415 @default.
- W4214924628 cites W2042172159 @default.
- W4214924628 cites W2045600648 @default.
- W4214924628 cites W2055762864 @default.
- W4214924628 cites W2062296968 @default.
- W4214924628 cites W2066291726 @default.
- W4214924628 cites W2069812460 @default.
- W4214924628 cites W2070188654 @default.
- W4214924628 cites W2072338845 @default.
- W4214924628 cites W2080535442 @default.
- W4214924628 cites W2097072335 @default.
- W4214924628 cites W2105243568 @default.
- W4214924628 cites W2111255583 @default.
- W4214924628 cites W2115147762 @default.
- W4214924628 cites W2123899739 @default.
- W4214924628 cites W2125329000 @default.
- W4214924628 cites W2134702012 @default.
- W4214924628 cites W2135293965 @default.
- W4214924628 cites W2137498448 @default.
- W4214924628 cites W2138083030 @default.
- W4214924628 cites W2151478249 @default.
- W4214924628 cites W2159373722 @default.
- W4214924628 cites W2162826740 @default.
- W4214924628 cites W2166821066 @default.
- W4214924628 cites W2316206413 @default.
- W4214924628 cites W2336745890 @default.
- W4214924628 cites W2408155315 @default.
- W4214924628 cites W2487320979 @default.
- W4214924628 cites W2498967648 @default.
- W4214924628 cites W2503240722 @default.
- W4214924628 cites W2516678538 @default.
- W4214924628 cites W2598658750 @default.
- W4214924628 cites W2765998176 @default.
- W4214924628 cites W2808040037 @default.
- W4214924628 cites W2883187881 @default.
- W4214924628 cites W2883852487 @default.
- W4214924628 cites W2922634008 @default.
- W4214924628 cites W3009179252 @default.
- W4214924628 cites W3011438087 @default.
- W4214924628 cites W3036519679 @default.
- W4214924628 cites W3092447841 @default.
- W4214924628 cites W3095120441 @default.
- W4214924628 cites W3123173177 @default.
- W4214924628 cites W3154101388 @default.
- W4214924628 cites W3201703223 @default.
- W4214924628 doi "https://doi.org/10.3390/atmos13030408" @default.
- W4214924628 hasPublicationYear "2022" @default.
- W4214924628 type Work @default.
- W4214924628 citedByCount "2" @default.
- W4214924628 countsByYear W42149246282022 @default.
- W4214924628 countsByYear W42149246282023 @default.
- W4214924628 crossrefType "journal-article" @default.
- W4214924628 hasAuthorship W4214924628A5000197801 @default.
- W4214924628 hasAuthorship W4214924628A5022533683 @default.
- W4214924628 hasAuthorship W4214924628A5022853922 @default.
- W4214924628 hasAuthorship W4214924628A5033106404 @default.
- W4214924628 hasAuthorship W4214924628A5047553593 @default.
- W4214924628 hasBestOaLocation W42149246281 @default.
- W4214924628 hasConcept C107054158 @default.
- W4214924628 hasConcept C119857082 @default.
- W4214924628 hasConcept C127313418 @default.
- W4214924628 hasConcept C151420433 @default.
- W4214924628 hasConcept C153294291 @default.
- W4214924628 hasConcept C161067210 @default.
- W4214924628 hasConcept C161840515 @default.
- W4214924628 hasConcept C205649164 @default.
- W4214924628 hasConcept C2781013037 @default.
- W4214924628 hasConcept C39432304 @default.
- W4214924628 hasConcept C41008148 @default.
- W4214924628 hasConcept C48921125 @default.
- W4214924628 hasConcept C49204034 @default.
- W4214924628 hasConcept C58640448 @default.
- W4214924628 hasConcept C62649853 @default.
- W4214924628 hasConceptScore W4214924628C107054158 @default.
- W4214924628 hasConceptScore W4214924628C119857082 @default.