Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214930488> ?p ?o ?g. }
- W4214930488 endingPage "2931" @default.
- W4214930488 startingPage "2917" @default.
- W4214930488 abstract "Due to different management strategy and prognosis of different subtypes of lung adenocarcinomas appearing as pure ground-glass nodules (pGGNs), it is important to differentiate invasive adenocarcinoma (IA) from adenocarcinoma in situ/minimally invasive adenocarcinoma (AIS/MIA) during lung cancer screening. The aim of this study was to develop and validate the qualitative and quantitative models to predict the invasiveness of lung adenocarcinoma appearing as pGGNs based on low-dose computed tomography (LDCT) and compare their diagnostic performance with that of intraoperative frozen section (FS).A total of 223 consecutive pathologically confirmed pGGNs from March 2018 to December 2020 were divided into a primary cohort (96 IAs and 64 AIS/MIAs) and validation cohort (39 IAs and 24 AIS/MIAs) according to scans (Brilliance iCT and Somatom Definition Flash) performed at Sichuan Cancer Hospital and Institute. The following LDCT features of pGGNs were analyzed: the qualitative features included nodule location, shape, margin, nodule-lung interface, lobulation, spiculation, pleural indentation, air bronchogram, vacuole, and vessel type, and the quantitative features included the diameter, volume, and mean attenuation. Multivariate logistic regression analysis was used to build a qualitative model, quantitative model, and combined qualitative and quantitative model. The diagnostic performance was assessed according to the following factors: the area under curve (AUC) of the receiver operating characteristic (ROC) curve, sensitivity, specificity, and accuracy.The AUCs of the qualitative model, quantitative model, combined qualitative and quantitative model, and the FS diagnosis were 0.854, 0.803, 0.873, and 0.870, respectively, in the primary cohort and 0.884, 0.855, 0.875, and 0.946, respectively, in the validation cohort. No significant difference of the AUCs was found among the radiological models and the FS diagnosis in the primary or validation cohort (all corrected P>0.05). Among the radiological models, the combined qualitative and quantitative model consisting of vessel type and volume showed the highest accuracy in both the primary and validation cohorts (0.831 and 0.889, respectively).The diagnostic performances of the qualitative and quantitative models based on LDCT to differentiate IA from AIS/MIA in pGGNs are equivalent to that of intraoperative FS diagnosis. The vessel type and volume can be preoperative and non-invasive biomarkers to assess the invasive risk of pGGNs in lung cancer screening." @default.
- W4214930488 created "2022-03-05" @default.
- W4214930488 creator A5015991153 @default.
- W4214930488 creator A5021083697 @default.
- W4214930488 creator A5023214008 @default.
- W4214930488 creator A5023613911 @default.
- W4214930488 creator A5028120101 @default.
- W4214930488 creator A5039510267 @default.
- W4214930488 creator A5044949526 @default.
- W4214930488 creator A5081884581 @default.
- W4214930488 date "2022-05-01" @default.
- W4214930488 modified "2023-10-18" @default.
- W4214930488 title "Development and validation of qualitative and quantitative models to predict invasiveness of lung adenocarcinomas manifesting as pure ground-glass nodules based on low-dose computed tomography during lung cancer screening" @default.
- W4214930488 cites W130099911 @default.
- W4214930488 cites W1925282974 @default.
- W4214930488 cites W1968434273 @default.
- W4214930488 cites W1992112921 @default.
- W4214930488 cites W1994682257 @default.
- W4214930488 cites W2003048812 @default.
- W4214930488 cites W2003318494 @default.
- W4214930488 cites W2005674904 @default.
- W4214930488 cites W2009874304 @default.
- W4214930488 cites W2020330859 @default.
- W4214930488 cites W2021481801 @default.
- W4214930488 cites W2030429965 @default.
- W4214930488 cites W2032995263 @default.
- W4214930488 cites W2040096495 @default.
- W4214930488 cites W2046717708 @default.
- W4214930488 cites W2046810386 @default.
- W4214930488 cites W2049674541 @default.
- W4214930488 cites W2068979002 @default.
- W4214930488 cites W2117692326 @default.
- W4214930488 cites W2122118317 @default.
- W4214930488 cites W2135096854 @default.
- W4214930488 cites W2136844032 @default.
- W4214930488 cites W2152474505 @default.
- W4214930488 cites W2155593341 @default.
- W4214930488 cites W2164022338 @default.
- W4214930488 cites W2164610603 @default.
- W4214930488 cites W2171504471 @default.
- W4214930488 cites W2176955114 @default.
- W4214930488 cites W2179117785 @default.
- W4214930488 cites W2189372563 @default.
- W4214930488 cites W2251438188 @default.
- W4214930488 cites W2288157239 @default.
- W4214930488 cites W2297980830 @default.
- W4214930488 cites W2328176404 @default.
- W4214930488 cites W2339467138 @default.
- W4214930488 cites W2417898714 @default.
- W4214930488 cites W2444672677 @default.
- W4214930488 cites W2594318146 @default.
- W4214930488 cites W2622078337 @default.
- W4214930488 cites W2735219798 @default.
- W4214930488 cites W2745392399 @default.
- W4214930488 cites W2784649105 @default.
- W4214930488 cites W2792636454 @default.
- W4214930488 cites W2800768023 @default.
- W4214930488 cites W2811475446 @default.
- W4214930488 cites W2894517603 @default.
- W4214930488 cites W2969900393 @default.
- W4214930488 cites W2971203260 @default.
- W4214930488 cites W2980098849 @default.
- W4214930488 cites W2983331589 @default.
- W4214930488 cites W3003415550 @default.
- W4214930488 cites W3019442259 @default.
- W4214930488 cites W3091797324 @default.
- W4214930488 cites W3092338402 @default.
- W4214930488 cites W3104075974 @default.
- W4214930488 cites W3157819492 @default.
- W4214930488 cites W3167548404 @default.
- W4214930488 cites W4233769980 @default.
- W4214930488 doi "https://doi.org/10.21037/qims-21-912" @default.
- W4214930488 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35502397" @default.
- W4214930488 hasPublicationYear "2022" @default.
- W4214930488 type Work @default.
- W4214930488 citedByCount "8" @default.
- W4214930488 countsByYear W42149304882022 @default.
- W4214930488 countsByYear W42149304882023 @default.
- W4214930488 crossrefType "journal-article" @default.
- W4214930488 hasAuthorship W4214930488A5015991153 @default.
- W4214930488 hasAuthorship W4214930488A5021083697 @default.
- W4214930488 hasAuthorship W4214930488A5023214008 @default.
- W4214930488 hasAuthorship W4214930488A5023613911 @default.
- W4214930488 hasAuthorship W4214930488A5028120101 @default.
- W4214930488 hasAuthorship W4214930488A5039510267 @default.
- W4214930488 hasAuthorship W4214930488A5044949526 @default.
- W4214930488 hasAuthorship W4214930488A5081884581 @default.
- W4214930488 hasBestOaLocation W42149304881 @default.
- W4214930488 hasConcept C121608353 @default.
- W4214930488 hasConcept C126322002 @default.
- W4214930488 hasConcept C126838900 @default.
- W4214930488 hasConcept C142724271 @default.
- W4214930488 hasConcept C151730666 @default.
- W4214930488 hasConcept C151956035 @default.
- W4214930488 hasConcept C2776256026 @default.
- W4214930488 hasConcept C2776731575 @default.
- W4214930488 hasConcept C2777001051 @default.
- W4214930488 hasConcept C2777714996 @default.