Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214930855> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4214930855 abstract "Among the most convenient bacteriological assessments for the diagnosis and treatment of several health complications is the chest X-Ray. In X-Ray imaging, it is a common technique to standardize the extracted image reconstruction with the usual uniform disciplines taken before the study. Unfortunately, there has been relatively little study on several separate lung disease monitoring, including X-Ray picture analysis and poorly labelled repositories. Our paper suggests an effective automated approach for the detection of lung disease trained on chest X-ray images. Besides, with a weighted binary classifier, a particular technique is also deployed that will optimally leverage the weighted predictions from optimal deep neural networks such as Inception-v3, VGG16 and ResNet-50. In addition to the existing, transfer learning, along with more rigorous academic training and testing sets, is used to fine-tune deep neural networks to achieve higher internal processes. In comparison, 88.14 percent test accuracy was obtained with the final proposed weighted binary classifier, where other models give us about 80.9 percent average accuracy. For a brief recurring diagnosis, the legally prescribed procedure may also be used which may increase the course of the same condition for physicians. For a prompt diagnosis of pneumonia, the suggested approach should be used and can improve the diagnosis process for health practitioners." @default.
- W4214930855 created "2022-03-05" @default.
- W4214930855 creator A5010852085 @default.
- W4214930855 creator A5036437660 @default.
- W4214930855 creator A5039513351 @default.
- W4214930855 creator A5044551446 @default.
- W4214930855 creator A5065504511 @default.
- W4214930855 creator A5075696467 @default.
- W4214930855 date "2021-12-08" @default.
- W4214930855 modified "2023-10-18" @default.
- W4214930855 title "An Efficient Deep Learning Approach for Detecting Lung Disease from Chest X-Ray Images Using Transfer Learning and Ensemble Modeling" @default.
- W4214930855 cites W2028798134 @default.
- W4214930855 cites W2097117768 @default.
- W4214930855 cites W2155893237 @default.
- W4214930855 cites W2183341477 @default.
- W4214930855 cites W2194775991 @default.
- W4214930855 cites W2558580397 @default.
- W4214930855 cites W2588893753 @default.
- W4214930855 cites W2618530766 @default.
- W4214930855 cites W2887196013 @default.
- W4214930855 cites W2901954625 @default.
- W4214930855 cites W3101156210 @default.
- W4214930855 cites W3104619894 @default.
- W4214930855 doi "https://doi.org/10.1109/csde53843.2021.9718454" @default.
- W4214930855 hasPublicationYear "2021" @default.
- W4214930855 type Work @default.
- W4214930855 citedByCount "1" @default.
- W4214930855 countsByYear W42149308552022 @default.
- W4214930855 crossrefType "proceedings-article" @default.
- W4214930855 hasAuthorship W4214930855A5010852085 @default.
- W4214930855 hasAuthorship W4214930855A5036437660 @default.
- W4214930855 hasAuthorship W4214930855A5039513351 @default.
- W4214930855 hasAuthorship W4214930855A5044551446 @default.
- W4214930855 hasAuthorship W4214930855A5065504511 @default.
- W4214930855 hasAuthorship W4214930855A5075696467 @default.
- W4214930855 hasBestOaLocation W42149308552 @default.
- W4214930855 hasConcept C108583219 @default.
- W4214930855 hasConcept C119857082 @default.
- W4214930855 hasConcept C12267149 @default.
- W4214930855 hasConcept C150899416 @default.
- W4214930855 hasConcept C153083717 @default.
- W4214930855 hasConcept C153180895 @default.
- W4214930855 hasConcept C154945302 @default.
- W4214930855 hasConcept C2984842247 @default.
- W4214930855 hasConcept C33923547 @default.
- W4214930855 hasConcept C41008148 @default.
- W4214930855 hasConcept C45942800 @default.
- W4214930855 hasConcept C48372109 @default.
- W4214930855 hasConcept C50644808 @default.
- W4214930855 hasConcept C66905080 @default.
- W4214930855 hasConcept C94375191 @default.
- W4214930855 hasConcept C95623464 @default.
- W4214930855 hasConceptScore W4214930855C108583219 @default.
- W4214930855 hasConceptScore W4214930855C119857082 @default.
- W4214930855 hasConceptScore W4214930855C12267149 @default.
- W4214930855 hasConceptScore W4214930855C150899416 @default.
- W4214930855 hasConceptScore W4214930855C153083717 @default.
- W4214930855 hasConceptScore W4214930855C153180895 @default.
- W4214930855 hasConceptScore W4214930855C154945302 @default.
- W4214930855 hasConceptScore W4214930855C2984842247 @default.
- W4214930855 hasConceptScore W4214930855C33923547 @default.
- W4214930855 hasConceptScore W4214930855C41008148 @default.
- W4214930855 hasConceptScore W4214930855C45942800 @default.
- W4214930855 hasConceptScore W4214930855C48372109 @default.
- W4214930855 hasConceptScore W4214930855C50644808 @default.
- W4214930855 hasConceptScore W4214930855C66905080 @default.
- W4214930855 hasConceptScore W4214930855C94375191 @default.
- W4214930855 hasConceptScore W4214930855C95623464 @default.
- W4214930855 hasLocation W42149308551 @default.
- W4214930855 hasLocation W42149308552 @default.
- W4214930855 hasOpenAccess W4214930855 @default.
- W4214930855 hasPrimaryLocation W42149308551 @default.
- W4214930855 hasRelatedWork W2039497028 @default.
- W4214930855 hasRelatedWork W2950066684 @default.
- W4214930855 hasRelatedWork W3158264953 @default.
- W4214930855 hasRelatedWork W3162132941 @default.
- W4214930855 hasRelatedWork W4200023151 @default.
- W4214930855 hasRelatedWork W4200409985 @default.
- W4214930855 hasRelatedWork W4298388782 @default.
- W4214930855 hasRelatedWork W4308112567 @default.
- W4214930855 hasRelatedWork W4310989423 @default.
- W4214930855 hasRelatedWork W4322727400 @default.
- W4214930855 isParatext "false" @default.
- W4214930855 isRetracted "false" @default.
- W4214930855 workType "article" @default.