Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214933857> ?p ?o ?g. }
- W4214933857 abstract "Abstract Background Accurate and non-invasive diagnosis of pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP) can avoid unnecessary puncture and surgery. This study aimed to develop a deep learning radiomics (DLR) model based on contrast-enhanced ultrasound (CEUS) images to assist radiologists in identifying PDAC and CP. Methods Patients with PDAC or CP were retrospectively enrolled from three hospitals. Detailed clinicopathological data were collected for each patient. Diagnoses were confirmed pathologically using biopsy or surgery in all patients. We developed an end-to-end DLR model for diagnosing PDAC and CP using CEUS images. To verify the clinical application value of the DLR model, two rounds of reader studies were performed. Results A total of 558 patients with pancreatic lesions were enrolled and were split into the training cohort ( n =351), internal validation cohort ( n =109), and external validation cohorts 1 ( n =50) and 2 ( n =48). The DLR model achieved an area under curve (AUC) of 0.986 (95% CI 0.975–0.994), 0.978 (95% CI 0.950–0.996), 0.967 (95% CI 0.917–1.000), and 0.953 (95% CI 0.877–1.000) in the training, internal validation, and external validation cohorts 1 and 2, respectively. The sensitivity and specificity of the DLR model were higher than or comparable to the diagnoses of the five radiologists in the three validation cohorts. With the aid of the DLR model, the diagnostic sensitivity of all radiologists was further improved at the expense of a small or no decrease in specificity in the three validation cohorts. Conclusions The findings of this study suggest that our DLR model can be used as an effective tool to assist radiologists in the diagnosis of PDAC and CP." @default.
- W4214933857 created "2022-03-05" @default.
- W4214933857 creator A5008047814 @default.
- W4214933857 creator A5016874780 @default.
- W4214933857 creator A5018412765 @default.
- W4214933857 creator A5021833361 @default.
- W4214933857 creator A5030691366 @default.
- W4214933857 creator A5059446493 @default.
- W4214933857 creator A5061264426 @default.
- W4214933857 creator A5068732609 @default.
- W4214933857 creator A5069147685 @default.
- W4214933857 creator A5071593501 @default.
- W4214933857 creator A5082323913 @default.
- W4214933857 creator A5086748641 @default.
- W4214933857 date "2022-03-02" @default.
- W4214933857 modified "2023-10-09" @default.
- W4214933857 title "Deep learning radiomics based on contrast-enhanced ultrasound images for assisted diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis" @default.
- W4214933857 cites W1559780482 @default.
- W4214933857 cites W1968812902 @default.
- W4214933857 cites W1979548154 @default.
- W4214933857 cites W1990750418 @default.
- W4214933857 cites W2000572544 @default.
- W4214933857 cites W2016713814 @default.
- W4214933857 cites W2023377017 @default.
- W4214933857 cites W2025542867 @default.
- W4214933857 cites W2031732226 @default.
- W4214933857 cites W2036153571 @default.
- W4214933857 cites W2045951088 @default.
- W4214933857 cites W2046812606 @default.
- W4214933857 cites W2061078219 @default.
- W4214933857 cites W2076184371 @default.
- W4214933857 cites W2088302753 @default.
- W4214933857 cites W2108743893 @default.
- W4214933857 cites W2113755011 @default.
- W4214933857 cites W2117539524 @default.
- W4214933857 cites W2125198438 @default.
- W4214933857 cites W2128739912 @default.
- W4214933857 cites W2137300622 @default.
- W4214933857 cites W2145872640 @default.
- W4214933857 cites W2165318730 @default.
- W4214933857 cites W2171896163 @default.
- W4214933857 cites W2183341477 @default.
- W4214933857 cites W2194775991 @default.
- W4214933857 cites W2318156113 @default.
- W4214933857 cites W2318408496 @default.
- W4214933857 cites W2322380755 @default.
- W4214933857 cites W2407673956 @default.
- W4214933857 cites W2514008771 @default.
- W4214933857 cites W2528491735 @default.
- W4214933857 cites W2557738935 @default.
- W4214933857 cites W2735862452 @default.
- W4214933857 cites W2755424347 @default.
- W4214933857 cites W2769184262 @default.
- W4214933857 cites W2801458876 @default.
- W4214933857 cites W2899491031 @default.
- W4214933857 cites W2905896877 @default.
- W4214933857 cites W2958145139 @default.
- W4214933857 cites W2963446712 @default.
- W4214933857 cites W3009257298 @default.
- W4214933857 cites W3016207021 @default.
- W4214933857 cites W3035047800 @default.
- W4214933857 cites W3085806799 @default.
- W4214933857 cites W3088669171 @default.
- W4214933857 cites W3092336664 @default.
- W4214933857 cites W3093181812 @default.
- W4214933857 cites W3121278167 @default.
- W4214933857 cites W3128646645 @default.
- W4214933857 cites W3136300884 @default.
- W4214933857 cites W3154126551 @default.
- W4214933857 cites W3206781867 @default.
- W4214933857 cites W2752382470 @default.
- W4214933857 cites W3155116105 @default.
- W4214933857 doi "https://doi.org/10.1186/s12916-022-02258-8" @default.
- W4214933857 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35232446" @default.
- W4214933857 hasPublicationYear "2022" @default.
- W4214933857 type Work @default.
- W4214933857 citedByCount "15" @default.
- W4214933857 countsByYear W42149338572022 @default.
- W4214933857 countsByYear W42149338572023 @default.
- W4214933857 crossrefType "journal-article" @default.
- W4214933857 hasAuthorship W4214933857A5008047814 @default.
- W4214933857 hasAuthorship W4214933857A5016874780 @default.
- W4214933857 hasAuthorship W4214933857A5018412765 @default.
- W4214933857 hasAuthorship W4214933857A5021833361 @default.
- W4214933857 hasAuthorship W4214933857A5030691366 @default.
- W4214933857 hasAuthorship W4214933857A5059446493 @default.
- W4214933857 hasAuthorship W4214933857A5061264426 @default.
- W4214933857 hasAuthorship W4214933857A5068732609 @default.
- W4214933857 hasAuthorship W4214933857A5069147685 @default.
- W4214933857 hasAuthorship W4214933857A5071593501 @default.
- W4214933857 hasAuthorship W4214933857A5082323913 @default.
- W4214933857 hasAuthorship W4214933857A5086748641 @default.
- W4214933857 hasBestOaLocation W42149338571 @default.
- W4214933857 hasConcept C121608353 @default.
- W4214933857 hasConcept C126322002 @default.
- W4214933857 hasConcept C126838900 @default.
- W4214933857 hasConcept C143753070 @default.
- W4214933857 hasConcept C167135981 @default.
- W4214933857 hasConcept C2775934546 @default.
- W4214933857 hasConcept C2775967933 @default.