Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214934525> ?p ?o ?g. }
- W4214934525 endingPage "127086" @default.
- W4214934525 startingPage "127086" @default.
- W4214934525 abstract "Accurate bus travel time prediction in real-time is challenging, as numerous factors such as fluctuating travel demand, incidents, signals, bus stops, dwell times, and seasonal variations can affect travel time, a spatio-temporal variable. Literature that considered the spatio-temporal evolution of bus travel time adopting traffic flow theory-based models investigated one-equation models (also widely known as first-order model) predominantly while the two-equation models (commonly known as higher-order models) have not been sufficiently explored due to their complex structure, parameters to calibrate, hardship in obtaining the data, and difficulty in discretizing and solving. Motivated by this, the present study explores the suitability of higher order traffic flow models for the prediction of bus travel time. This study adopted a well-known two-equation model ‘Aw-Rascle model‘ (Aw and Rascle, 2000), which addressed most of the limitations of the previous models, and discretized using a Finite volume method to preserve the conservational properties of Partial Differential Equations (PDE). As Global Positioning System (GPS) is a widespread data source for transit systems, the identified model was rewritten in terms of speed by adopting a suitable pressure function. The discretized model was represented in the state-state-space form and integrated with a filtering technique using appropriate inputs, to facilitate real-time implementation. The performance of the proposed methodology was evaluated and compared with a first order model (Lighthill Whittam Richards (LWR) model) based approach to understand the efficacy of the higher-order models in travel time prediction. The prediction accuracy in terms of Mean Absolute Percentage Error (MAPE) was around 14% for the proposed methodology with an absolute deviation of around +/-1.2 min, which was better than the existing LWR model-based prediction method. The developed real-time prediction methodology is a promising one to be integrated with Advanced Public Transportation Systems (APTS) applications." @default.
- W4214934525 created "2022-03-05" @default.
- W4214934525 creator A5031937569 @default.
- W4214934525 creator A5039918256 @default.
- W4214934525 creator A5070390385 @default.
- W4214934525 date "2022-06-01" @default.
- W4214934525 modified "2023-09-30" @default.
- W4214934525 title "Spatio-temporal modelling and prediction of bus travel time using a higher-order traffic flow model" @default.
- W4214934525 cites W1964312966 @default.
- W4214934525 cites W1977594918 @default.
- W4214934525 cites W1991611335 @default.
- W4214934525 cites W2010910815 @default.
- W4214934525 cites W2014346895 @default.
- W4214934525 cites W2016025229 @default.
- W4214934525 cites W2026184121 @default.
- W4214934525 cites W2029465969 @default.
- W4214934525 cites W2056050104 @default.
- W4214934525 cites W2064954028 @default.
- W4214934525 cites W2066742627 @default.
- W4214934525 cites W2068332220 @default.
- W4214934525 cites W2074108366 @default.
- W4214934525 cites W2074423942 @default.
- W4214934525 cites W2093921901 @default.
- W4214934525 cites W2106110155 @default.
- W4214934525 cites W2110570647 @default.
- W4214934525 cites W2131819535 @default.
- W4214934525 cites W2140364654 @default.
- W4214934525 cites W2146576530 @default.
- W4214934525 cites W2151302170 @default.
- W4214934525 cites W2152196380 @default.
- W4214934525 cites W2160400057 @default.
- W4214934525 cites W2512632519 @default.
- W4214934525 cites W2556421247 @default.
- W4214934525 cites W2605995093 @default.
- W4214934525 cites W2623190258 @default.
- W4214934525 cites W2883055831 @default.
- W4214934525 cites W2901039154 @default.
- W4214934525 cites W2901377689 @default.
- W4214934525 cites W2911964244 @default.
- W4214934525 cites W2945970499 @default.
- W4214934525 cites W3167696808 @default.
- W4214934525 cites W2789305253 @default.
- W4214934525 doi "https://doi.org/10.1016/j.physa.2022.127086" @default.
- W4214934525 hasPublicationYear "2022" @default.
- W4214934525 type Work @default.
- W4214934525 citedByCount "1" @default.
- W4214934525 countsByYear W42149345252023 @default.
- W4214934525 crossrefType "journal-article" @default.
- W4214934525 hasAuthorship W4214934525A5031937569 @default.
- W4214934525 hasAuthorship W4214934525A5039918256 @default.
- W4214934525 hasAuthorship W4214934525A5070390385 @default.
- W4214934525 hasConcept C121332964 @default.
- W4214934525 hasConcept C126255220 @default.
- W4214934525 hasConcept C129537906 @default.
- W4214934525 hasConcept C134306372 @default.
- W4214934525 hasConcept C151637689 @default.
- W4214934525 hasConcept C176715033 @default.
- W4214934525 hasConcept C205269179 @default.
- W4214934525 hasConcept C207512268 @default.
- W4214934525 hasConcept C2524010 @default.
- W4214934525 hasConcept C2778327290 @default.
- W4214934525 hasConcept C28826006 @default.
- W4214934525 hasConcept C33923547 @default.
- W4214934525 hasConcept C38349280 @default.
- W4214934525 hasConcept C38652104 @default.
- W4214934525 hasConcept C41008148 @default.
- W4214934525 hasConcept C44154836 @default.
- W4214934525 hasConcept C70410870 @default.
- W4214934525 hasConcept C71924100 @default.
- W4214934525 hasConcept C73000952 @default.
- W4214934525 hasConcept C79403827 @default.
- W4214934525 hasConcept C93779851 @default.
- W4214934525 hasConcept C97355855 @default.
- W4214934525 hasConceptScore W4214934525C121332964 @default.
- W4214934525 hasConceptScore W4214934525C126255220 @default.
- W4214934525 hasConceptScore W4214934525C129537906 @default.
- W4214934525 hasConceptScore W4214934525C134306372 @default.
- W4214934525 hasConceptScore W4214934525C151637689 @default.
- W4214934525 hasConceptScore W4214934525C176715033 @default.
- W4214934525 hasConceptScore W4214934525C205269179 @default.
- W4214934525 hasConceptScore W4214934525C207512268 @default.
- W4214934525 hasConceptScore W4214934525C2524010 @default.
- W4214934525 hasConceptScore W4214934525C2778327290 @default.
- W4214934525 hasConceptScore W4214934525C28826006 @default.
- W4214934525 hasConceptScore W4214934525C33923547 @default.
- W4214934525 hasConceptScore W4214934525C38349280 @default.
- W4214934525 hasConceptScore W4214934525C38652104 @default.
- W4214934525 hasConceptScore W4214934525C41008148 @default.
- W4214934525 hasConceptScore W4214934525C44154836 @default.
- W4214934525 hasConceptScore W4214934525C70410870 @default.
- W4214934525 hasConceptScore W4214934525C71924100 @default.
- W4214934525 hasConceptScore W4214934525C73000952 @default.
- W4214934525 hasConceptScore W4214934525C79403827 @default.
- W4214934525 hasConceptScore W4214934525C93779851 @default.
- W4214934525 hasConceptScore W4214934525C97355855 @default.
- W4214934525 hasLocation W42149345251 @default.
- W4214934525 hasOpenAccess W4214934525 @default.
- W4214934525 hasPrimaryLocation W42149345251 @default.