Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214935724> ?p ?o ?g. }
- W4214935724 endingPage "28772" @default.
- W4214935724 startingPage "28760" @default.
- W4214935724 abstract "This work proposes a neural network architecture, called 3D FC-DenseNet, for assigning amino acid labels to X-ray crystallographic electron density maps without relying on the amino acid sequence of proteins. The 3DFC-DenseNet is able to treat the task as a 3D semantic segmentation problem, assigning amino acid labels directly to protein electron density maps. By creating dedicated data sets and models for high, medium and low resolution samples, our method matches the performance of crystallographic toolkits for primary structure assignment at high resolutions. Furthermore, it outperforms them at medium resolution and functions at low resolutions where current toolkits and human ability fails." @default.
- W4214935724 created "2022-03-05" @default.
- W4214935724 creator A5010554991 @default.
- W4214935724 creator A5021221650 @default.
- W4214935724 creator A5040773064 @default.
- W4214935724 creator A5047346523 @default.
- W4214935724 date "2022-01-01" @default.
- W4214935724 modified "2023-10-14" @default.
- W4214935724 title "Residue Assignment in Crystallographic Protein Electron Density Maps with 3D Convolutional Networks" @default.
- W4214935724 cites W1901129140 @default.
- W4214935724 cites W1964655247 @default.
- W4214935724 cites W1969672293 @default.
- W4214935724 cites W2013265853 @default.
- W4214935724 cites W2101610042 @default.
- W4214935724 cites W2124026197 @default.
- W4214935724 cites W2131417105 @default.
- W4214935724 cites W2140616356 @default.
- W4214935724 cites W2143815085 @default.
- W4214935724 cites W2170585418 @default.
- W4214935724 cites W2559597482 @default.
- W4214935724 cites W2608353599 @default.
- W4214935724 cites W2617750324 @default.
- W4214935724 cites W2884034690 @default.
- W4214935724 cites W2884376935 @default.
- W4214935724 cites W2898210859 @default.
- W4214935724 cites W2914493539 @default.
- W4214935724 cites W2915042619 @default.
- W4214935724 cites W2962914239 @default.
- W4214935724 cites W2963016155 @default.
- W4214935724 cites W2963446712 @default.
- W4214935724 cites W2963706542 @default.
- W4214935724 cites W2966869039 @default.
- W4214935724 cites W2973457155 @default.
- W4214935724 cites W3006245489 @default.
- W4214935724 cites W3007165221 @default.
- W4214935724 cites W3010499032 @default.
- W4214935724 cites W3012511738 @default.
- W4214935724 cites W3015830335 @default.
- W4214935724 cites W3045772654 @default.
- W4214935724 cites W3091335486 @default.
- W4214935724 cites W3168377947 @default.
- W4214935724 doi "https://doi.org/10.1109/access.2022.3156108" @default.
- W4214935724 hasPublicationYear "2022" @default.
- W4214935724 type Work @default.
- W4214935724 citedByCount "0" @default.
- W4214935724 crossrefType "journal-article" @default.
- W4214935724 hasAuthorship W4214935724A5010554991 @default.
- W4214935724 hasAuthorship W4214935724A5021221650 @default.
- W4214935724 hasAuthorship W4214935724A5040773064 @default.
- W4214935724 hasAuthorship W4214935724A5047346523 @default.
- W4214935724 hasBestOaLocation W42149357241 @default.
- W4214935724 hasConcept C11413529 @default.
- W4214935724 hasConcept C121332964 @default.
- W4214935724 hasConcept C125485243 @default.
- W4214935724 hasConcept C138268822 @default.
- W4214935724 hasConcept C147120987 @default.
- W4214935724 hasConcept C153180895 @default.
- W4214935724 hasConcept C154945302 @default.
- W4214935724 hasConcept C185592680 @default.
- W4214935724 hasConcept C41008148 @default.
- W4214935724 hasConcept C47701112 @default.
- W4214935724 hasConcept C50644808 @default.
- W4214935724 hasConcept C55493867 @default.
- W4214935724 hasConcept C62520636 @default.
- W4214935724 hasConcept C8010536 @default.
- W4214935724 hasConcept C81363708 @default.
- W4214935724 hasConcept C89600930 @default.
- W4214935724 hasConceptScore W4214935724C11413529 @default.
- W4214935724 hasConceptScore W4214935724C121332964 @default.
- W4214935724 hasConceptScore W4214935724C125485243 @default.
- W4214935724 hasConceptScore W4214935724C138268822 @default.
- W4214935724 hasConceptScore W4214935724C147120987 @default.
- W4214935724 hasConceptScore W4214935724C153180895 @default.
- W4214935724 hasConceptScore W4214935724C154945302 @default.
- W4214935724 hasConceptScore W4214935724C185592680 @default.
- W4214935724 hasConceptScore W4214935724C41008148 @default.
- W4214935724 hasConceptScore W4214935724C47701112 @default.
- W4214935724 hasConceptScore W4214935724C50644808 @default.
- W4214935724 hasConceptScore W4214935724C55493867 @default.
- W4214935724 hasConceptScore W4214935724C62520636 @default.
- W4214935724 hasConceptScore W4214935724C8010536 @default.
- W4214935724 hasConceptScore W4214935724C81363708 @default.
- W4214935724 hasConceptScore W4214935724C89600930 @default.
- W4214935724 hasLocation W42149357241 @default.
- W4214935724 hasLocation W42149357242 @default.
- W4214935724 hasOpenAccess W4214935724 @default.
- W4214935724 hasPrimaryLocation W42149357241 @default.
- W4214935724 hasRelatedWork W2054441282 @default.
- W4214935724 hasRelatedWork W2521062615 @default.
- W4214935724 hasRelatedWork W2735477435 @default.
- W4214935724 hasRelatedWork W2767651786 @default.
- W4214935724 hasRelatedWork W2912288872 @default.
- W4214935724 hasRelatedWork W3016958897 @default.
- W4214935724 hasRelatedWork W3181746755 @default.
- W4214935724 hasRelatedWork W4200528772 @default.
- W4214935724 hasRelatedWork W4283379348 @default.
- W4214935724 hasRelatedWork W4312417841 @default.
- W4214935724 hasVolume "10" @default.