Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214935802> ?p ?o ?g. }
- W4214935802 endingPage "2389" @default.
- W4214935802 startingPage "2352" @default.
- W4214935802 abstract "Summary In an era of increasing energy demand, declining oil fields, and fluctuating crude oil prices globally, most oil companies are looking forward to implementing cost-effective and environmentally sustainable enhanced oil recovery (EOR) techniques such as low salinity waterflooding (LSWF) and microbial EOR (MEOR). The present study numerically investigates the combined influence of simultaneous LSWF and microbial flooding for in-situ MEOR in tertiary mode within a sandstone core under spatiotemporally varying pH and temperature conditions. The developed black oil model consists of five major coupled submodels: nonlinear heat transport model; ion transport coupled with multiple ion exchange (MIE) involving uncomplexed cations and anions; pH variation with salinity and temperature; coupled reactive transport of injected substrates, Pseudomonas putida and produced biosurfactants with microbial maximum specific growth rate varying with temperature, salinity, and pH; relative permeability and fractional flow curve variations owing to interfacial tension (IFT) reduction and wettability alteration (WA) by LSWF and biofilm deposition. The governing equations are solved using finite difference technique. Operator splitting and bisection methods are adopted to solve the MIE-transport model. The present model is found to be numerically stable and agree well with previously published experimental and analytical results. In the proposed MIE-transport mechanism, decreasing injection water (IW) salinity from 2.52 to 0.32 M causes enhanced Ca2+ desorption rendering rock surface toward more water-wet. Consequently, oil relative permeability (kro) increases with >55% reduction in water fractional flow (fw) at water saturation of 0.5 from the initial oil-wet condition. Further reducing IW salinity to 0.03 M causes Ca2+ adsorption shifting the surface wettability toward more oil-wet, thus increasing fw by 52%. Formation water (FW) salinity showed minor impact on WA with <5% decrease in fw when FW salinity is reduced from 3.15 to 1.05 M. During low-salinity augmented microbial flooding (LSAMF), biosurfactant production is enhanced by >63% on reducing IW salinity from 2.52 to 0.32 M with negligible increase on further reducing IW and FW salinities. This might be owing to limiting nonisothermal condition (40 to 55°C), dispersion, sorption, and microbial decay. During LSAMF, maximum biosurfactant production occurs at microbial maximum specific growth rate of 0.53 h-1, mean fluid velocity of 2.63×10-3 m h-1 and initial oil saturation of 0.6, thus resulting in significant WA, increase in kro by >20%, and corresponding fw reduction by >84%. Moreover, the EOR efficiency of LSAMF is marginally impacted even on increasing the minimum attainable IFT by two orders of magnitude from 10-3 to 10-1 mN m-1. Though pH increased from 8.0 to 8.9, it showed minor impact on microbial metabolism. Formation damage owing to bioplugging observed near injection point causing increase in fw by ~26% can be mitigated by adopting suitable well-stimulation strategies during the LSAMF run time. The present study is a novel attempt to show synergistic effect of LSAMF over LSWF in enhancing oil mobility and recovery at core scale by simultaneously addressing complex crude oil-brine-rock (COBR) chemistry and critical thermodynamic parameters that govern MEOR efficiency within a typical sandstone formation. The present model with relatively lower computational cost and running time improves the predictive capability to preselect potential field candidates for successful LSAMF implementation." @default.
- W4214935802 created "2022-03-05" @default.
- W4214935802 creator A5000198437 @default.
- W4214935802 creator A5009199732 @default.
- W4214935802 creator A5017247740 @default.
- W4214935802 date "2022-03-02" @default.
- W4214935802 modified "2023-09-26" @default.
- W4214935802 title "Numerical Investigation on Low-Salinity Augmented Microbial Flooding within a Sandstone Core for Enhanced Oil Recovery under Nonisothermal and pH Gradient Conditions" @default.
- W4214935802 cites W1527895486 @default.
- W4214935802 cites W1567673461 @default.
- W4214935802 cites W1577530775 @default.
- W4214935802 cites W1718962772 @default.
- W4214935802 cites W1972816637 @default.
- W4214935802 cites W1973231515 @default.
- W4214935802 cites W1983353374 @default.
- W4214935802 cites W1985138864 @default.
- W4214935802 cites W1987289683 @default.
- W4214935802 cites W1987413673 @default.
- W4214935802 cites W1988333449 @default.
- W4214935802 cites W1989500606 @default.
- W4214935802 cites W1990334205 @default.
- W4214935802 cites W1996207428 @default.
- W4214935802 cites W2004175979 @default.
- W4214935802 cites W2005323816 @default.
- W4214935802 cites W2007210894 @default.
- W4214935802 cites W2008916641 @default.
- W4214935802 cites W2009067460 @default.
- W4214935802 cites W2009185315 @default.
- W4214935802 cites W2009851197 @default.
- W4214935802 cites W2009854599 @default.
- W4214935802 cites W2014152240 @default.
- W4214935802 cites W2014642054 @default.
- W4214935802 cites W2018174161 @default.
- W4214935802 cites W2021584074 @default.
- W4214935802 cites W2025058016 @default.
- W4214935802 cites W2025580558 @default.
- W4214935802 cites W2027491352 @default.
- W4214935802 cites W2029814471 @default.
- W4214935802 cites W2029944355 @default.
- W4214935802 cites W2031032483 @default.
- W4214935802 cites W2032464706 @default.
- W4214935802 cites W2032495246 @default.
- W4214935802 cites W2034227992 @default.
- W4214935802 cites W2035057460 @default.
- W4214935802 cites W2039681925 @default.
- W4214935802 cites W2042301882 @default.
- W4214935802 cites W2043341503 @default.
- W4214935802 cites W2048015776 @default.
- W4214935802 cites W2052593260 @default.
- W4214935802 cites W2053216995 @default.
- W4214935802 cites W2054001784 @default.
- W4214935802 cites W2054053367 @default.
- W4214935802 cites W2057104134 @default.
- W4214935802 cites W2057920957 @default.
- W4214935802 cites W2058170548 @default.
- W4214935802 cites W2062636760 @default.
- W4214935802 cites W2062654221 @default.
- W4214935802 cites W2065681410 @default.
- W4214935802 cites W2067993920 @default.
- W4214935802 cites W2068314910 @default.
- W4214935802 cites W2068343977 @default.
- W4214935802 cites W2079789553 @default.
- W4214935802 cites W2079995869 @default.
- W4214935802 cites W2080795323 @default.
- W4214935802 cites W2081006004 @default.
- W4214935802 cites W2081111402 @default.
- W4214935802 cites W2083341447 @default.
- W4214935802 cites W2083470964 @default.
- W4214935802 cites W2088234112 @default.
- W4214935802 cites W2091021867 @default.
- W4214935802 cites W2093143698 @default.
- W4214935802 cites W2094727417 @default.
- W4214935802 cites W2101023393 @default.
- W4214935802 cites W2107075729 @default.
- W4214935802 cites W2114925899 @default.
- W4214935802 cites W2133910087 @default.
- W4214935802 cites W2135249270 @default.
- W4214935802 cites W2142110707 @default.
- W4214935802 cites W2155093486 @default.
- W4214935802 cites W2167657634 @default.
- W4214935802 cites W2282231832 @default.
- W4214935802 cites W2285733579 @default.
- W4214935802 cites W2303750624 @default.
- W4214935802 cites W2328122506 @default.
- W4214935802 cites W2330891169 @default.
- W4214935802 cites W2333805367 @default.
- W4214935802 cites W2418877544 @default.
- W4214935802 cites W2419012221 @default.
- W4214935802 cites W2462665947 @default.
- W4214935802 cites W2513131461 @default.
- W4214935802 cites W2548283381 @default.
- W4214935802 cites W2602556505 @default.
- W4214935802 cites W2614276784 @default.
- W4214935802 cites W2621950648 @default.
- W4214935802 cites W2623543652 @default.
- W4214935802 cites W2735281748 @default.
- W4214935802 cites W2766620532 @default.
- W4214935802 cites W2781603788 @default.