Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214936265> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4214936265 abstract "In order to explore the influence of the characteristic factors of freeway traffic accident on the severity of the accident, this study established the freeway traffic accident severity prediction model influenced by road and environmental factors, explored the influence of road factors and environmental factors on the severity of the accident. Firstly, the XGBoost model was established and SHAP value was introduced to explain the XGBoost model, and the importance ranking of the influence degree of each feature on the target variable was obtained and the global influence of each feature on the target variable is visualized. Then, according to the selected variables and their values, the freeway traffic accident severity prediction model based on Bayesian network was constructed. Finally, based on the data of freeway accidents in Hebei Province, a case study was conducted to predict the severity of accidents by road and environmental factors, and then the severity of accidents under the interaction of different factors was predicted by using the constructed prediction model. The results show that the learning accuracy and prediction accuracy of the model are verified, and the performance of the prediction model is good. According to the analysis results, the corresponding safety management measures can be put forward to reduce the severity of the accident." @default.
- W4214936265 created "2022-03-05" @default.
- W4214936265 creator A5003125617 @default.
- W4214936265 creator A5005386344 @default.
- W4214936265 creator A5005494005 @default.
- W4214936265 creator A5009465240 @default.
- W4214936265 creator A5051901475 @default.
- W4214936265 creator A5061859602 @default.
- W4214936265 date "2022-01-21" @default.
- W4214936265 modified "2023-09-27" @default.
- W4214936265 title "Freeway traffic accident severity prediction based on multi-dimensional and multi-layer Bayesian network" @default.
- W4214936265 doi "https://doi.org/10.1109/icpeca53709.2022.9719202" @default.
- W4214936265 hasPublicationYear "2022" @default.
- W4214936265 type Work @default.
- W4214936265 citedByCount "1" @default.
- W4214936265 countsByYear W42149362652022 @default.
- W4214936265 crossrefType "proceedings-article" @default.
- W4214936265 hasAuthorship W4214936265A5003125617 @default.
- W4214936265 hasAuthorship W4214936265A5005386344 @default.
- W4214936265 hasAuthorship W4214936265A5005494005 @default.
- W4214936265 hasAuthorship W4214936265A5009465240 @default.
- W4214936265 hasAuthorship W4214936265A5051901475 @default.
- W4214936265 hasAuthorship W4214936265A5061859602 @default.
- W4214936265 hasConcept C107673813 @default.
- W4214936265 hasConcept C111472728 @default.
- W4214936265 hasConcept C119857082 @default.
- W4214936265 hasConcept C124101348 @default.
- W4214936265 hasConcept C127413603 @default.
- W4214936265 hasConcept C134306372 @default.
- W4214936265 hasConcept C138885662 @default.
- W4214936265 hasConcept C154945302 @default.
- W4214936265 hasConcept C182365436 @default.
- W4214936265 hasConcept C189430467 @default.
- W4214936265 hasConcept C22212356 @default.
- W4214936265 hasConcept C2776401178 @default.
- W4214936265 hasConcept C2780289543 @default.
- W4214936265 hasConcept C2989506057 @default.
- W4214936265 hasConcept C33724603 @default.
- W4214936265 hasConcept C33923547 @default.
- W4214936265 hasConcept C41008148 @default.
- W4214936265 hasConcept C41895202 @default.
- W4214936265 hasConcept C45804977 @default.
- W4214936265 hasConceptScore W4214936265C107673813 @default.
- W4214936265 hasConceptScore W4214936265C111472728 @default.
- W4214936265 hasConceptScore W4214936265C119857082 @default.
- W4214936265 hasConceptScore W4214936265C124101348 @default.
- W4214936265 hasConceptScore W4214936265C127413603 @default.
- W4214936265 hasConceptScore W4214936265C134306372 @default.
- W4214936265 hasConceptScore W4214936265C138885662 @default.
- W4214936265 hasConceptScore W4214936265C154945302 @default.
- W4214936265 hasConceptScore W4214936265C182365436 @default.
- W4214936265 hasConceptScore W4214936265C189430467 @default.
- W4214936265 hasConceptScore W4214936265C22212356 @default.
- W4214936265 hasConceptScore W4214936265C2776401178 @default.
- W4214936265 hasConceptScore W4214936265C2780289543 @default.
- W4214936265 hasConceptScore W4214936265C2989506057 @default.
- W4214936265 hasConceptScore W4214936265C33724603 @default.
- W4214936265 hasConceptScore W4214936265C33923547 @default.
- W4214936265 hasConceptScore W4214936265C41008148 @default.
- W4214936265 hasConceptScore W4214936265C41895202 @default.
- W4214936265 hasConceptScore W4214936265C45804977 @default.
- W4214936265 hasLocation W42149362651 @default.
- W4214936265 hasOpenAccess W4214936265 @default.
- W4214936265 hasPrimaryLocation W42149362651 @default.
- W4214936265 hasRelatedWork W1608365237 @default.
- W4214936265 hasRelatedWork W2022306940 @default.
- W4214936265 hasRelatedWork W2043517185 @default.
- W4214936265 hasRelatedWork W2058733336 @default.
- W4214936265 hasRelatedWork W2249011631 @default.
- W4214936265 hasRelatedWork W2350381210 @default.
- W4214936265 hasRelatedWork W2355731920 @default.
- W4214936265 hasRelatedWork W2950301280 @default.
- W4214936265 hasRelatedWork W4200324540 @default.
- W4214936265 hasRelatedWork W845503588 @default.
- W4214936265 isParatext "false" @default.
- W4214936265 isRetracted "false" @default.
- W4214936265 workType "article" @default.