Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214937652> ?p ?o ?g. }
- W4214937652 endingPage "119031" @default.
- W4214937652 startingPage "119031" @default.
- W4214937652 abstract "Head motion during PET scans causes image quality degradation, decreased concentration in regions with high uptake and incorrect outcome measures from kinetic analysis of dynamic datasets. Previously, we proposed a data-driven method, center of tracer distribution (COD), to detect head motion without an external motion tracking device. There, motion was detected using one dimension of the COD trace with a semiautomatic detection algorithm, requiring multiple user defined parameters and manual intervention. In this study, we developed a new data-driven motion detection algorithm, which is automatic, self-adaptive to noise level, does not require user-defined parameters and uses all three dimensions of the COD trace (3DCOD). 3DCOD was first validated and tested using 30 simulation studies (18F-FDG, N = 15; 11C-raclopride (RAC), N = 15) with large motion. The proposed motion correction method was tested on 22 real human datasets, with 20 acquired from a high resolution research tomograph (HRRT) scanner (18F-FDG, N = 10; 11C-RAC, N = 10) and 2 acquired from the Siemens Biograph mCT scanner. Real-time hardware-based motion tracking information (Vicra) was available for all real studies and was used as the gold standard. 3DCOD was compared to Vicra, no motion correction (NMC), one-direction COD (our previous method called 1DCOD) and two conventional frame-based image registration (FIR) algorithms, i.e., FIR1 (based on predefined frames reconstructed with attenuation correction) and FIR2 (without attenuation correction) for both simulation and real studies. For the simulation studies, 3DCOD yielded -2.3 ± 1.4% (mean ± standard deviation across all subjects and 11 brain regions) error in region of interest (ROI) uptake for 18F-FDG (-3.4 ± 1.7% for 11C-RAC across all subjects and 2 regions) as compared to Vicra (perfect correction) while NMC, FIR1, FIR2 and 1DCOD yielded -25.4 ± 11.1% (-34.5 ± 16.1% for 11C- RAC), -13.4 ± 3.5% (-16.1 ± 4.6%), -5.7 ± 3.6% (-8.0 ± 4.5%) and -2.6 ± 1.5% (-5.1 ± 2.7%), respectively. For real HRRT studies, 3DCOD yielded -0.3 ± 2.8% difference for 18F-FDG (-0.4 ± 3.2% for 11C-RAC) as compared to Vicra while NMC, FIR1, FIR2 and 1DCOD yielded -14.9 ± 9.0% (-24.5 ± 14.6%), -3.6 ± 4.9% (-13.4 ± 14.3%), -0.6 ± 3.4% (-6.7 ± 5.3%) and -1.5 ± 4.2% (-2.2 ± 4.1%), respectively. In summary, the proposed motion correction method yielded comparable performance to the hardware-based motion tracking method for multiple tracers, including very challenging cases with large frequent head motion, in studies performed on a non-TOF scanner." @default.
- W4214937652 created "2022-03-05" @default.
- W4214937652 creator A5005864631 @default.
- W4214937652 creator A5012357230 @default.
- W4214937652 creator A5014085959 @default.
- W4214937652 creator A5030526984 @default.
- W4214937652 creator A5033065437 @default.
- W4214937652 creator A5050027882 @default.
- W4214937652 creator A5055268674 @default.
- W4214937652 creator A5064339880 @default.
- W4214937652 creator A5083553196 @default.
- W4214937652 date "2022-05-01" @default.
- W4214937652 modified "2023-10-15" @default.
- W4214937652 title "Adaptive data-driven motion detection and optimized correction for brain PET" @default.
- W4214937652 cites W1951368365 @default.
- W4214937652 cites W1965212122 @default.
- W4214937652 cites W1975684011 @default.
- W4214937652 cites W1996242543 @default.
- W4214937652 cites W2004293194 @default.
- W4214937652 cites W2042469942 @default.
- W4214937652 cites W2047284752 @default.
- W4214937652 cites W2056000609 @default.
- W4214937652 cites W2069425565 @default.
- W4214937652 cites W2075029962 @default.
- W4214937652 cites W2099883816 @default.
- W4214937652 cites W2101240686 @default.
- W4214937652 cites W2103707010 @default.
- W4214937652 cites W2117138655 @default.
- W4214937652 cites W2119040171 @default.
- W4214937652 cites W2144524546 @default.
- W4214937652 cites W2148726987 @default.
- W4214937652 cites W2151130155 @default.
- W4214937652 cites W2165742256 @default.
- W4214937652 cites W2614627369 @default.
- W4214937652 cites W2797707878 @default.
- W4214937652 cites W2913020863 @default.
- W4214937652 cites W2932551630 @default.
- W4214937652 cites W2958646971 @default.
- W4214937652 cites W3003857389 @default.
- W4214937652 cites W3004179153 @default.
- W4214937652 cites W3098618426 @default.
- W4214937652 cites W3155585461 @default.
- W4214937652 doi "https://doi.org/10.1016/j.neuroimage.2022.119031" @default.
- W4214937652 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35257856" @default.
- W4214937652 hasPublicationYear "2022" @default.
- W4214937652 type Work @default.
- W4214937652 citedByCount "4" @default.
- W4214937652 countsByYear W42149376522022 @default.
- W4214937652 countsByYear W42149376522023 @default.
- W4214937652 crossrefType "journal-article" @default.
- W4214937652 hasAuthorship W4214937652A5005864631 @default.
- W4214937652 hasAuthorship W4214937652A5012357230 @default.
- W4214937652 hasAuthorship W4214937652A5014085959 @default.
- W4214937652 hasAuthorship W4214937652A5030526984 @default.
- W4214937652 hasAuthorship W4214937652A5033065437 @default.
- W4214937652 hasAuthorship W4214937652A5050027882 @default.
- W4214937652 hasAuthorship W4214937652A5055268674 @default.
- W4214937652 hasAuthorship W4214937652A5064339880 @default.
- W4214937652 hasAuthorship W4214937652A5083553196 @default.
- W4214937652 hasBestOaLocation W42149376521 @default.
- W4214937652 hasConcept C104114177 @default.
- W4214937652 hasConcept C105795698 @default.
- W4214937652 hasConcept C115961682 @default.
- W4214937652 hasConcept C120665830 @default.
- W4214937652 hasConcept C121332964 @default.
- W4214937652 hasConcept C123688308 @default.
- W4214937652 hasConcept C154945302 @default.
- W4214937652 hasConcept C15744967 @default.
- W4214937652 hasConcept C184652730 @default.
- W4214937652 hasConcept C19417346 @default.
- W4214937652 hasConcept C22679943 @default.
- W4214937652 hasConcept C2775936607 @default.
- W4214937652 hasConcept C2779751349 @default.
- W4214937652 hasConcept C31972630 @default.
- W4214937652 hasConcept C33923547 @default.
- W4214937652 hasConcept C41008148 @default.
- W4214937652 hasConcept C55020928 @default.
- W4214937652 hasConceptScore W4214937652C104114177 @default.
- W4214937652 hasConceptScore W4214937652C105795698 @default.
- W4214937652 hasConceptScore W4214937652C115961682 @default.
- W4214937652 hasConceptScore W4214937652C120665830 @default.
- W4214937652 hasConceptScore W4214937652C121332964 @default.
- W4214937652 hasConceptScore W4214937652C123688308 @default.
- W4214937652 hasConceptScore W4214937652C154945302 @default.
- W4214937652 hasConceptScore W4214937652C15744967 @default.
- W4214937652 hasConceptScore W4214937652C184652730 @default.
- W4214937652 hasConceptScore W4214937652C19417346 @default.
- W4214937652 hasConceptScore W4214937652C22679943 @default.
- W4214937652 hasConceptScore W4214937652C2775936607 @default.
- W4214937652 hasConceptScore W4214937652C2779751349 @default.
- W4214937652 hasConceptScore W4214937652C31972630 @default.
- W4214937652 hasConceptScore W4214937652C33923547 @default.
- W4214937652 hasConceptScore W4214937652C41008148 @default.
- W4214937652 hasConceptScore W4214937652C55020928 @default.
- W4214937652 hasFunder F4320332161 @default.
- W4214937652 hasLocation W42149376521 @default.
- W4214937652 hasLocation W42149376522 @default.
- W4214937652 hasLocation W42149376523 @default.