Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214937762> ?p ?o ?g. }
- W4214937762 endingPage "1837" @default.
- W4214937762 startingPage "1837" @default.
- W4214937762 abstract "Energy efficiency is one of the most important current challenges, and its impact at a global level is considerable. To solve current challenges, it is critical that consumers are able to control their energy consumption. In this paper, we propose using a time series of window-based entropy to detect anomalies in the electricity consumption of a household when the pattern of consumption behavior exhibits a change. We compare the accuracy of this approach with two machine learning approaches, random forest and neural networks, and with a statistical approach, the ARIMA model. We study whether these approaches detect the same anomalous periods. These different techniques have been evaluated using a real dataset obtained from different households with different consumption profiles from the Madrid Region. The entropy-based algorithm detects more days classified as anomalous according to context information compared to the other algorithms. This approach has the advantages that it does not require a training period and that it adapts dynamically to changes, except in vacation periods when consumption drops drastically and requires some time for adapting to the new situation." @default.
- W4214937762 created "2022-03-05" @default.
- W4214937762 creator A5021832848 @default.
- W4214937762 creator A5039026107 @default.
- W4214937762 creator A5089344826 @default.
- W4214937762 date "2022-03-02" @default.
- W4214937762 modified "2023-09-26" @default.
- W4214937762 title "Entropy-Based Anomaly Detection in Household Electricity Consumption" @default.
- W4214937762 cites W1987228002 @default.
- W4214937762 cites W1989866797 @default.
- W4214937762 cites W1996944908 @default.
- W4214937762 cites W2016210396 @default.
- W4214937762 cites W2064675550 @default.
- W4214937762 cites W2125014994 @default.
- W4214937762 cites W2418133265 @default.
- W4214937762 cites W2559280146 @default.
- W4214937762 cites W2597866042 @default.
- W4214937762 cites W2747580724 @default.
- W4214937762 cites W2754252319 @default.
- W4214937762 cites W2788001476 @default.
- W4214937762 cites W2806199268 @default.
- W4214937762 cites W2899180768 @default.
- W4214937762 cites W2899934327 @default.
- W4214937762 cites W2902372528 @default.
- W4214937762 cites W2905123904 @default.
- W4214937762 cites W2908375445 @default.
- W4214937762 cites W2911964244 @default.
- W4214937762 cites W2934214988 @default.
- W4214937762 cites W2948490758 @default.
- W4214937762 cites W2992078377 @default.
- W4214937762 cites W2996059118 @default.
- W4214937762 cites W3015175351 @default.
- W4214937762 cites W3038776169 @default.
- W4214937762 cites W3107249503 @default.
- W4214937762 cites W3110870618 @default.
- W4214937762 cites W3128419367 @default.
- W4214937762 cites W3131117441 @default.
- W4214937762 cites W3139255054 @default.
- W4214937762 cites W3163598860 @default.
- W4214937762 cites W3177880870 @default.
- W4214937762 cites W3203065226 @default.
- W4214937762 cites W3216147232 @default.
- W4214937762 cites W3217606401 @default.
- W4214937762 cites W4205877180 @default.
- W4214937762 cites W4206025198 @default.
- W4214937762 cites W4206910610 @default.
- W4214937762 cites W4210462718 @default.
- W4214937762 cites W4212943665 @default.
- W4214937762 doi "https://doi.org/10.3390/en15051837" @default.
- W4214937762 hasPublicationYear "2022" @default.
- W4214937762 type Work @default.
- W4214937762 citedByCount "2" @default.
- W4214937762 countsByYear W42149377622022 @default.
- W4214937762 countsByYear W42149377622023 @default.
- W4214937762 crossrefType "journal-article" @default.
- W4214937762 hasAuthorship W4214937762A5021832848 @default.
- W4214937762 hasAuthorship W4214937762A5039026107 @default.
- W4214937762 hasAuthorship W4214937762A5089344826 @default.
- W4214937762 hasBestOaLocation W42149377621 @default.
- W4214937762 hasConcept C102392041 @default.
- W4214937762 hasConcept C106301342 @default.
- W4214937762 hasConcept C111919701 @default.
- W4214937762 hasConcept C119599485 @default.
- W4214937762 hasConcept C119857082 @default.
- W4214937762 hasConcept C121332964 @default.
- W4214937762 hasConcept C124101348 @default.
- W4214937762 hasConcept C127413603 @default.
- W4214937762 hasConcept C144024400 @default.
- W4214937762 hasConcept C149782125 @default.
- W4214937762 hasConcept C151406439 @default.
- W4214937762 hasConcept C154945302 @default.
- W4214937762 hasConcept C162324750 @default.
- W4214937762 hasConcept C206658404 @default.
- W4214937762 hasConcept C24338571 @default.
- W4214937762 hasConcept C2778751112 @default.
- W4214937762 hasConcept C2780165032 @default.
- W4214937762 hasConcept C30772137 @default.
- W4214937762 hasConcept C36289849 @default.
- W4214937762 hasConcept C41008148 @default.
- W4214937762 hasConcept C50644808 @default.
- W4214937762 hasConcept C62520636 @default.
- W4214937762 hasConcept C739882 @default.
- W4214937762 hasConceptScore W4214937762C102392041 @default.
- W4214937762 hasConceptScore W4214937762C106301342 @default.
- W4214937762 hasConceptScore W4214937762C111919701 @default.
- W4214937762 hasConceptScore W4214937762C119599485 @default.
- W4214937762 hasConceptScore W4214937762C119857082 @default.
- W4214937762 hasConceptScore W4214937762C121332964 @default.
- W4214937762 hasConceptScore W4214937762C124101348 @default.
- W4214937762 hasConceptScore W4214937762C127413603 @default.
- W4214937762 hasConceptScore W4214937762C144024400 @default.
- W4214937762 hasConceptScore W4214937762C149782125 @default.
- W4214937762 hasConceptScore W4214937762C151406439 @default.
- W4214937762 hasConceptScore W4214937762C154945302 @default.
- W4214937762 hasConceptScore W4214937762C162324750 @default.
- W4214937762 hasConceptScore W4214937762C206658404 @default.
- W4214937762 hasConceptScore W4214937762C24338571 @default.
- W4214937762 hasConceptScore W4214937762C2778751112 @default.