Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214943545> ?p ?o ?g. }
- W4214943545 endingPage "112958" @default.
- W4214943545 startingPage "112958" @default.
- W4214943545 abstract "The unprecedented availability of optical satellite data in cloud-based computing platforms, such as Google Earth Engine (GEE), opens new possibilities to develop crop trait retrieval models from the local to the planetary scale. Hybrid retrieval models are of interest to run in these platforms as they combine the advantages of physically- based radiative transfer models (RTM) with the flexibility of machine learning regression algorithms. Previous research with GEE primarily relied on processing bottom-of-atmosphere (BOA) reflectance data, which requires atmospheric correction. In the present study, we implemented hybrid models directly into GEE for processing Sentinel-2 (S2) Level-1C (L1C) top-of-atmosphere (TOA) reflectance data into crop traits. To achieve this, a training dataset was generated using the leaf-canopy RTM PROSAIL in combination with the atmospheric model 6SV. Gaussian process regression (GPR) retrieval models were then established for eight essential crop traits namely leaf chlorophyll content, leaf water content, leaf dry matter content, fractional vegetation cover, leaf area index (LAI), and upscaled leaf variables (i.e., canopy chlorophyll content, canopy water content and canopy dry matter content). An important pre-requisite for implementation into GEE is that the models are sufficiently light in order to facilitate efficient and fast processing. Successful reduction of the training dataset by 78% was achieved using the active learning technique Euclidean distance-based diversity (EBD). With the EBD-GPR models, highly accurate validation results of LAI and upscaled leaf variables were obtained against in situ field data from the validation study site Munich-North-Isar (MNI), with normalized root mean square errors (NRMSE) from 6% to 13%. Using an independent validation dataset of similar crop types (Italian Grosseto test site), the retrieval models showed moderate to good performances for canopy-level variables, with NRMSE ranging from 14% to 50%, but failed for the leaf-level estimates. Obtained maps over the MNI site were further compared against Sentinel-2 Level 2 Prototype Processor (SL2P) vegetation estimates generated from the ESA Sentinels' Application Platform (SNAP) Biophysical Processor, proving high consistency of both retrievals (R2 from 0.80 to 0.94). Finally, thanks to the seamless GEE processing capability, the TOA-based mapping was applied over the entirety of Germany at 20 m spatial resolution including information about prediction uncertainty. The obtained maps provided confidence of the developed EBD-GPR retrieval models for integration in the GEE framework and national scale mapping from S2-L1C imagery. In summary, the proposed retrieval workflow demonstrates the possibility of routine processing of S2 TOA data into crop traits maps at any place on Earth as required for operational agricultural applications." @default.
- W4214943545 created "2022-03-05" @default.
- W4214943545 creator A5026990352 @default.
- W4214943545 creator A5032185790 @default.
- W4214943545 creator A5037090869 @default.
- W4214943545 creator A5037702692 @default.
- W4214943545 creator A5057952512 @default.
- W4214943545 creator A5069209351 @default.
- W4214943545 creator A5070189634 @default.
- W4214943545 creator A5072649258 @default.
- W4214943545 creator A5079448372 @default.
- W4214943545 creator A5086095782 @default.
- W4214943545 date "2022-05-01" @default.
- W4214943545 modified "2023-10-13" @default.
- W4214943545 title "Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data" @default.
- W4214943545 cites W116253160 @default.
- W4214943545 cites W1772504446 @default.
- W4214943545 cites W1966123034 @default.
- W4214943545 cites W1976784693 @default.
- W4214943545 cites W1979407902 @default.
- W4214943545 cites W1986812364 @default.
- W4214943545 cites W1987607942 @default.
- W4214943545 cites W2003719822 @default.
- W4214943545 cites W2006595237 @default.
- W4214943545 cites W2007342648 @default.
- W4214943545 cites W2013061102 @default.
- W4214943545 cites W2013369959 @default.
- W4214943545 cites W2018774679 @default.
- W4214943545 cites W2018782479 @default.
- W4214943545 cites W2029756745 @default.
- W4214943545 cites W2038617433 @default.
- W4214943545 cites W2038751902 @default.
- W4214943545 cites W2044076861 @default.
- W4214943545 cites W2051128904 @default.
- W4214943545 cites W2056435747 @default.
- W4214943545 cites W2065772955 @default.
- W4214943545 cites W2095958845 @default.
- W4214943545 cites W2107131609 @default.
- W4214943545 cites W2108582080 @default.
- W4214943545 cites W2110910681 @default.
- W4214943545 cites W2115539456 @default.
- W4214943545 cites W2116922976 @default.
- W4214943545 cites W2117884339 @default.
- W4214943545 cites W2125763679 @default.
- W4214943545 cites W2127406961 @default.
- W4214943545 cites W2129090471 @default.
- W4214943545 cites W2130670721 @default.
- W4214943545 cites W2131126673 @default.
- W4214943545 cites W2150422670 @default.
- W4214943545 cites W2151881447 @default.
- W4214943545 cites W2157582727 @default.
- W4214943545 cites W2158834676 @default.
- W4214943545 cites W2159454708 @default.
- W4214943545 cites W2160434086 @default.
- W4214943545 cites W2166312616 @default.
- W4214943545 cites W2167881994 @default.
- W4214943545 cites W221493477 @default.
- W4214943545 cites W2271414963 @default.
- W4214943545 cites W2404939661 @default.
- W4214943545 cites W2413379912 @default.
- W4214943545 cites W2420517413 @default.
- W4214943545 cites W2526081939 @default.
- W4214943545 cites W2550113586 @default.
- W4214943545 cites W2622265626 @default.
- W4214943545 cites W2725897987 @default.
- W4214943545 cites W2734963652 @default.
- W4214943545 cites W2771841295 @default.
- W4214943545 cites W2792309568 @default.
- W4214943545 cites W2793728001 @default.
- W4214943545 cites W2803867753 @default.
- W4214943545 cites W2806394060 @default.
- W4214943545 cites W2807884127 @default.
- W4214943545 cites W2808125284 @default.
- W4214943545 cites W2808198652 @default.
- W4214943545 cites W2810559460 @default.
- W4214943545 cites W2883026662 @default.
- W4214943545 cites W2883957308 @default.
- W4214943545 cites W2890225206 @default.
- W4214943545 cites W2897788153 @default.
- W4214943545 cites W2900137774 @default.
- W4214943545 cites W2903146849 @default.
- W4214943545 cites W2910053993 @default.
- W4214943545 cites W2915540904 @default.
- W4214943545 cites W2921811015 @default.
- W4214943545 cites W2943149585 @default.
- W4214943545 cites W2943971141 @default.
- W4214943545 cites W2945065301 @default.
- W4214943545 cites W2946683773 @default.
- W4214943545 cites W2980184901 @default.
- W4214943545 cites W2981797353 @default.
- W4214943545 cites W2983376237 @default.
- W4214943545 cites W2984811207 @default.
- W4214943545 cites W2996041315 @default.
- W4214943545 cites W3000536168 @default.
- W4214943545 cites W3011044411 @default.
- W4214943545 cites W3011511010 @default.
- W4214943545 cites W3023058341 @default.
- W4214943545 cites W3025651833 @default.