Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214945263> ?p ?o ?g. }
- W4214945263 endingPage "113423" @default.
- W4214945263 startingPage "113423" @default.
- W4214945263 abstract "In compositional reservoir simulation, a significant portion of the CPU time is consumed in phase equilibrium calculations. Previous studies have incorporated the machine learning (ML) technique to accelerate and stabilize the phase equilibrium calculations. However, there are two main limitations: 1) previous work mainly focuses on conventional reservoirs, which cannot be extended to unconventional reservoirs; 2) previous studies are limited to fluid compositions with specific hydrocarbon components that narrows their application. In this paper, we propose a novel ML-assisted framework for phase equilibrium calculations in shale reservoirs. A general set of pseudo-components is considered to allow users to customize the composition of hydrocarbon mixtures. A pore size-dependent EOS is applied to simulate the fluid phase behavior in nano-scale conditions. In the stability test, the multilayer perceptron (MLP) is trained to predict the fluid phase state: single-phase or two-phase. For the fluid labeled as two-phase condition, the phase-split computation is performed to obtain the equilibrium ratio. Instead of using the initial estimate from the stability test, the MLP and the physics-informed neural network (PINN) are applied to obtain the initial estimates for the minimization program. The results show that, with the assistance of ML technique, we are able to reduce the computation time needed for the nano-scale phase equilibrium calculations by more than two orders of magnitude while maintaining 97% accuracy. Compared with MLP, PINN can accurately predict the equilibrium ratios with a limited range of input variables but require more training time. The progress of this study present a ML-assisted framework for phase equilibrium calculations and the generalized proxy phase-equilibrium calculator can be compiled into reservoir simulator to accelerate flash calculation." @default.
- W4214945263 created "2022-03-05" @default.
- W4214945263 creator A5028018389 @default.
- W4214945263 creator A5049184140 @default.
- W4214945263 creator A5052473952 @default.
- W4214945263 creator A5085565911 @default.
- W4214945263 date "2022-07-01" @default.
- W4214945263 modified "2023-10-05" @default.
- W4214945263 title "A generalized machine learning-assisted phase-equilibrium calculation model for shale reservoirs" @default.
- W4214945263 cites W1965500060 @default.
- W4214945263 cites W1975944951 @default.
- W4214945263 cites W1980704616 @default.
- W4214945263 cites W1989901395 @default.
- W4214945263 cites W1990055209 @default.
- W4214945263 cites W1991531814 @default.
- W4214945263 cites W2001334699 @default.
- W4214945263 cites W2009367142 @default.
- W4214945263 cites W2011686380 @default.
- W4214945263 cites W2014242353 @default.
- W4214945263 cites W2016059710 @default.
- W4214945263 cites W2019342866 @default.
- W4214945263 cites W2027994982 @default.
- W4214945263 cites W2030524365 @default.
- W4214945263 cites W2037298597 @default.
- W4214945263 cites W2041784920 @default.
- W4214945263 cites W2046004683 @default.
- W4214945263 cites W2046356504 @default.
- W4214945263 cites W2053211263 @default.
- W4214945263 cites W2056363590 @default.
- W4214945263 cites W2066979994 @default.
- W4214945263 cites W2069297302 @default.
- W4214945263 cites W2073601842 @default.
- W4214945263 cites W2074244069 @default.
- W4214945263 cites W2093402000 @default.
- W4214945263 cites W2129288307 @default.
- W4214945263 cites W2139212933 @default.
- W4214945263 cites W2155433308 @default.
- W4214945263 cites W2265406617 @default.
- W4214945263 cites W2341450043 @default.
- W4214945263 cites W2369991688 @default.
- W4214945263 cites W2385840111 @default.
- W4214945263 cites W2411001384 @default.
- W4214945263 cites W2532042304 @default.
- W4214945263 cites W2566320856 @default.
- W4214945263 cites W2747572553 @default.
- W4214945263 cites W2788765658 @default.
- W4214945263 cites W2793865141 @default.
- W4214945263 cites W2889052470 @default.
- W4214945263 cites W2901170826 @default.
- W4214945263 cites W2903142326 @default.
- W4214945263 cites W2916776766 @default.
- W4214945263 cites W2944153424 @default.
- W4214945263 cites W2944211585 @default.
- W4214945263 cites W2946621086 @default.
- W4214945263 cites W2946875900 @default.
- W4214945263 cites W2950409403 @default.
- W4214945263 cites W2964986889 @default.
- W4214945263 cites W2968875023 @default.
- W4214945263 cites W2979965685 @default.
- W4214945263 cites W3004774238 @default.
- W4214945263 cites W3005731237 @default.
- W4214945263 cites W3005922957 @default.
- W4214945263 cites W3010787967 @default.
- W4214945263 cites W3038795879 @default.
- W4214945263 cites W3099601005 @default.
- W4214945263 cites W3127917793 @default.
- W4214945263 cites W3132663141 @default.
- W4214945263 cites W4247680473 @default.
- W4214945263 doi "https://doi.org/10.1016/j.fluid.2022.113423" @default.
- W4214945263 hasPublicationYear "2022" @default.
- W4214945263 type Work @default.
- W4214945263 citedByCount "6" @default.
- W4214945263 countsByYear W42149452632022 @default.
- W4214945263 countsByYear W42149452632023 @default.
- W4214945263 crossrefType "journal-article" @default.
- W4214945263 hasAuthorship W4214945263A5028018389 @default.
- W4214945263 hasAuthorship W4214945263A5049184140 @default.
- W4214945263 hasAuthorship W4214945263A5052473952 @default.
- W4214945263 hasAuthorship W4214945263A5085565911 @default.
- W4214945263 hasConcept C112972136 @default.
- W4214945263 hasConcept C11413529 @default.
- W4214945263 hasConcept C119857082 @default.
- W4214945263 hasConcept C127313418 @default.
- W4214945263 hasConcept C151730666 @default.
- W4214945263 hasConcept C153127940 @default.
- W4214945263 hasConcept C154945302 @default.
- W4214945263 hasConcept C159985019 @default.
- W4214945263 hasConcept C178790620 @default.
- W4214945263 hasConcept C185592680 @default.
- W4214945263 hasConcept C192562407 @default.
- W4214945263 hasConcept C204323151 @default.
- W4214945263 hasConcept C2776692518 @default.
- W4214945263 hasConcept C2777207669 @default.
- W4214945263 hasConcept C2778668878 @default.
- W4214945263 hasConcept C2986159531 @default.
- W4214945263 hasConcept C41008148 @default.
- W4214945263 hasConcept C44280652 @default.
- W4214945263 hasConcept C45374587 @default.