Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214953648> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4214953648 endingPage "S722" @default.
- W4214953648 startingPage "S715" @default.
- W4214953648 abstract "Development of a new dug is a very lengthy and highly expensive process since only preclinical, pharmacokinetic, pharmacodynamic and toxicological studies include a multiple of in silico, in vitro, in vivo experimentations that traditionally last several years. In the present review, we briefly report some examples that demonstrate the power of the computer-assisted drug discovery process with some examples that are published and revealing the successful applications of artificial intelligence (AI) technology on this vivid area. Besides, we address the situation of drug repositioning (repurposing) in clinical applications. Yet few success stories in this regard that provide us with a clear evidence that AI will reveal its great potential in accelerating effective new drug finding. AI accelerates drug repurposing and AI approaches are altogether necessary and inevitable tools in new medicine development. In spite of the fact that AI in drug development is still in its infancy, the advancements in AI and machine-learning (ML) algorithms have an unprecedented potential. The AI/ML solutions driven by pharmaceutical scientists, computer scientists, statisticians, physicians and others are increasingly working together in the processes of drug development and are adopting AI-based technologies for the rapid discovery of medicines. AI approaches, coupled with big data, are expected to substantially improve the effectiveness of drug repurposing and finding new drugs for various complex human diseases." @default.
- W4214953648 created "2022-03-05" @default.
- W4214953648 creator A5025103425 @default.
- W4214953648 creator A5034299848 @default.
- W4214953648 creator A5043215117 @default.
- W4214953648 date "2021-12-30" @default.
- W4214953648 modified "2023-10-02" @default.
- W4214953648 title "The potential applications of artificial intelligence in drug discovery and development" @default.
- W4214953648 cites W2753588101 @default.
- W4214953648 cites W2885536898 @default.
- W4214953648 cites W2937741271 @default.
- W4214953648 cites W2954868841 @default.
- W4214953648 cites W2980068845 @default.
- W4214953648 cites W2992586577 @default.
- W4214953648 cites W3000139398 @default.
- W4214953648 cites W3001449808 @default.
- W4214953648 cites W3007309629 @default.
- W4214953648 cites W3028161460 @default.
- W4214953648 cites W3038922487 @default.
- W4214953648 cites W3087156149 @default.
- W4214953648 cites W3112951420 @default.
- W4214953648 cites W3139532774 @default.
- W4214953648 cites W3158078985 @default.
- W4214953648 cites W3177828909 @default.
- W4214953648 cites W3186179742 @default.
- W4214953648 cites W4254278957 @default.
- W4214953648 doi "https://doi.org/10.33549/physiolres.934765" @default.
- W4214953648 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35199553" @default.
- W4214953648 hasPublicationYear "2021" @default.
- W4214953648 type Work @default.
- W4214953648 citedByCount "8" @default.
- W4214953648 countsByYear W42149536482022 @default.
- W4214953648 countsByYear W42149536482023 @default.
- W4214953648 crossrefType "journal-article" @default.
- W4214953648 hasAuthorship W4214953648A5025103425 @default.
- W4214953648 hasAuthorship W4214953648A5034299848 @default.
- W4214953648 hasAuthorship W4214953648A5043215117 @default.
- W4214953648 hasBestOaLocation W42149536481 @default.
- W4214953648 hasConcept C103637391 @default.
- W4214953648 hasConcept C111919701 @default.
- W4214953648 hasConcept C124101348 @default.
- W4214953648 hasConcept C127413603 @default.
- W4214953648 hasConcept C154945302 @default.
- W4214953648 hasConcept C2522767166 @default.
- W4214953648 hasConcept C2780035454 @default.
- W4214953648 hasConcept C41008148 @default.
- W4214953648 hasConcept C519536355 @default.
- W4214953648 hasConcept C548081761 @default.
- W4214953648 hasConcept C60644358 @default.
- W4214953648 hasConcept C64903051 @default.
- W4214953648 hasConcept C71924100 @default.
- W4214953648 hasConcept C74187038 @default.
- W4214953648 hasConcept C75684735 @default.
- W4214953648 hasConcept C86803240 @default.
- W4214953648 hasConcept C98045186 @default.
- W4214953648 hasConcept C98274493 @default.
- W4214953648 hasConceptScore W4214953648C103637391 @default.
- W4214953648 hasConceptScore W4214953648C111919701 @default.
- W4214953648 hasConceptScore W4214953648C124101348 @default.
- W4214953648 hasConceptScore W4214953648C127413603 @default.
- W4214953648 hasConceptScore W4214953648C154945302 @default.
- W4214953648 hasConceptScore W4214953648C2522767166 @default.
- W4214953648 hasConceptScore W4214953648C2780035454 @default.
- W4214953648 hasConceptScore W4214953648C41008148 @default.
- W4214953648 hasConceptScore W4214953648C519536355 @default.
- W4214953648 hasConceptScore W4214953648C548081761 @default.
- W4214953648 hasConceptScore W4214953648C60644358 @default.
- W4214953648 hasConceptScore W4214953648C64903051 @default.
- W4214953648 hasConceptScore W4214953648C71924100 @default.
- W4214953648 hasConceptScore W4214953648C74187038 @default.
- W4214953648 hasConceptScore W4214953648C75684735 @default.
- W4214953648 hasConceptScore W4214953648C86803240 @default.
- W4214953648 hasConceptScore W4214953648C98045186 @default.
- W4214953648 hasConceptScore W4214953648C98274493 @default.
- W4214953648 hasLocation W42149536481 @default.
- W4214953648 hasLocation W42149536482 @default.
- W4214953648 hasLocation W42149536483 @default.
- W4214953648 hasOpenAccess W4214953648 @default.
- W4214953648 hasPrimaryLocation W42149536481 @default.
- W4214953648 hasRelatedWork W2299074827 @default.
- W4214953648 hasRelatedWork W2561827752 @default.
- W4214953648 hasRelatedWork W2886266969 @default.
- W4214953648 hasRelatedWork W3044296243 @default.
- W4214953648 hasRelatedWork W3134564766 @default.
- W4214953648 hasRelatedWork W3159848998 @default.
- W4214953648 hasRelatedWork W4224322440 @default.
- W4214953648 hasRelatedWork W4285179237 @default.
- W4214953648 hasRelatedWork W4285506882 @default.
- W4214953648 hasRelatedWork W4318481850 @default.
- W4214953648 isParatext "false" @default.
- W4214953648 isRetracted "false" @default.
- W4214953648 workType "article" @default.