Matches in SemOpenAlex for { <https://semopenalex.org/work/W42174909> ?p ?o ?g. }
- W42174909 abstract "Direct Internal Reforming (DIR) on Solid Oxide Fuel Cell (SOFC) anodes is often considered for fuel cells systems utilising carbon based fuels. Methane Steam Reforming (MSR) is one of the most extensively studied types of DIR. The hydrogen formed by the MSR reaction can be electrochemically oxidised in the fuel cell to produce electricity, while the exothermic electrochemical reaction supplies heat to the endothermic MSR reaction. The balance is delicate and unsuitable design choices will result in operational problems and poor fuel cell performance. These issues are known for over two decades now and remain unsolved despite several attempts to capture the rate limiting kinetics of the reforming process on fuel cell anodes and modelling studies of methane fuelled SOFCs. It is not yet clear whether MSR kinetics derived from substrate measurements can be used to model SOFC performance and the influence of electrochemistry on the MSR reaction kinetics is rarely reported. In this work a rate equation is selected based on experimental observations and kinetics proposed in literature, on both industrial catalysts and SOFC anode materials. Ideal reactor models are derived for two specific test setup geometries, considering the electrochemical reactions in the anode. The ideal reactor models are then used to fit the parameters of the selected rate equation to experimental data from earlier work. The selected rate equation is of the Langmuir-Hinshelwood-Hougen-Watson type. The rate determining kinetics are characterised by the slow reaction of surface adsorbed carbon hydroxide forming carbon monoxide and atomic hydrogen. In addition surface coverage of atomic oxygen on the catalyst is limiting the available number of reaction sites. Two constants and their respective energies, associated with the activation of the rate limiting kinetics and the surface adsorption of oxygen, are fitted to experimental data. To evaluate the selected rate equation Computational Fluid Dynamics (CFD) type models are developed for the two experimental setups, one with a Ni?GDC anode and the other utilising a Ni?YSZ anode. These model are used to solve fluid dynamics, heat transfer, species transport, and electrochemistry. To model methane steam reforming in the fuel cell anode the selected rate equation is implemented in the CFD models. The obtained models are used to simulate MSR on the fuel cell anode for the experimental conditions. The modelled methane conversions and I-V characteristics are compared to the experimental values. The spatial distributions in the anode predicted with the selected rate equation and a power law model, fitted to the same experimental data, are compared to evaluate the use of global reaction models. For the Ni?GDC anode setup the model predicts the experimental methane conversions with good accuracy: the R2 value is with 0.987 close to unity. The experimental and modelled I-V characteristics are in good agreement. The model adopting a power law reaction mechanism underestimates the gradients in the anode. However, the model shows poor agreement with the experimental results obtained on the Ni?YSZ test setup. Large deviations with the temperatures and concentrations assumed in the ideal reactor model are found which might explain the inaccuracy of the model. The good agreement on the Ni?GDC anode suggests that MSR kinetics in SOFCs can be modelled for both open and closed circuit conditions with an appropriate intrinsic rate equation. This was not confirmed for the Ni?YSZ anode. Therefore further investigation with a combined experimental and modelling ap- proach, preferably on similar setups, is required." @default.
- W42174909 created "2016-06-24" @default.
- W42174909 creator A5034055314 @default.
- W42174909 date "2014-12-04" @default.
- W42174909 modified "2023-09-27" @default.
- W42174909 title "Direct Internal Methane Steam Reforming in Operating Solid Oxide Fuel Cells: A kinetic modelling approach" @default.
- W42174909 cites W1497489027 @default.
- W42174909 cites W1500160828 @default.
- W42174909 cites W1671860850 @default.
- W42174909 cites W1970920492 @default.
- W42174909 cites W1972154194 @default.
- W42174909 cites W1975441022 @default.
- W42174909 cites W1978852209 @default.
- W42174909 cites W1981259157 @default.
- W42174909 cites W1983140522 @default.
- W42174909 cites W1984650973 @default.
- W42174909 cites W1986503591 @default.
- W42174909 cites W1992438756 @default.
- W42174909 cites W1992982886 @default.
- W42174909 cites W1993013421 @default.
- W42174909 cites W2000208381 @default.
- W42174909 cites W2001240875 @default.
- W42174909 cites W2005624296 @default.
- W42174909 cites W2009852554 @default.
- W42174909 cites W2036422642 @default.
- W42174909 cites W2039099679 @default.
- W42174909 cites W2039627927 @default.
- W42174909 cites W2040994137 @default.
- W42174909 cites W2041016931 @default.
- W42174909 cites W2043904343 @default.
- W42174909 cites W2045559888 @default.
- W42174909 cites W2050509353 @default.
- W42174909 cites W2056286168 @default.
- W42174909 cites W2059200991 @default.
- W42174909 cites W2060399057 @default.
- W42174909 cites W2061413959 @default.
- W42174909 cites W2064569467 @default.
- W42174909 cites W2065966320 @default.
- W42174909 cites W2068503546 @default.
- W42174909 cites W2070937452 @default.
- W42174909 cites W2073046542 @default.
- W42174909 cites W2075886908 @default.
- W42174909 cites W2080739203 @default.
- W42174909 cites W2081961902 @default.
- W42174909 cites W2082008232 @default.
- W42174909 cites W2084755666 @default.
- W42174909 cites W2085626539 @default.
- W42174909 cites W2092336455 @default.
- W42174909 cites W2092397727 @default.
- W42174909 cites W2094112586 @default.
- W42174909 cites W2105051984 @default.
- W42174909 cites W2105744137 @default.
- W42174909 cites W2111419530 @default.
- W42174909 cites W2127174912 @default.
- W42174909 cites W2129662472 @default.
- W42174909 cites W2131346692 @default.
- W42174909 cites W2136613849 @default.
- W42174909 cites W2140728346 @default.
- W42174909 cites W2142333515 @default.
- W42174909 cites W2147630065 @default.
- W42174909 cites W2162344984 @default.
- W42174909 cites W2293657740 @default.
- W42174909 cites W2593577777 @default.
- W42174909 cites W3021534906 @default.
- W42174909 cites W657101009 @default.
- W42174909 cites W71272001 @default.
- W42174909 cites W2142992406 @default.
- W42174909 hasPublicationYear "2014" @default.
- W42174909 type Work @default.
- W42174909 sameAs 42174909 @default.
- W42174909 citedByCount "0" @default.
- W42174909 crossrefType "journal-article" @default.
- W42174909 hasAuthorship W42174909A5034055314 @default.
- W42174909 hasConcept C127413603 @default.
- W42174909 hasConcept C147789679 @default.
- W42174909 hasConcept C150394285 @default.
- W42174909 hasConcept C17525397 @default.
- W42174909 hasConcept C178790620 @default.
- W42174909 hasConcept C185592680 @default.
- W42174909 hasConcept C192562407 @default.
- W42174909 hasConcept C193015443 @default.
- W42174909 hasConcept C202189072 @default.
- W42174909 hasConcept C20976626 @default.
- W42174909 hasConcept C2778456004 @default.
- W42174909 hasConcept C42360764 @default.
- W42174909 hasConcept C43535742 @default.
- W42174909 hasConcept C45119746 @default.
- W42174909 hasConcept C512968161 @default.
- W42174909 hasConcept C516920438 @default.
- W42174909 hasConcept C52859227 @default.
- W42174909 hasConcept C89395315 @default.
- W42174909 hasConceptScore W42174909C127413603 @default.
- W42174909 hasConceptScore W42174909C147789679 @default.
- W42174909 hasConceptScore W42174909C150394285 @default.
- W42174909 hasConceptScore W42174909C17525397 @default.
- W42174909 hasConceptScore W42174909C178790620 @default.
- W42174909 hasConceptScore W42174909C185592680 @default.
- W42174909 hasConceptScore W42174909C192562407 @default.
- W42174909 hasConceptScore W42174909C193015443 @default.
- W42174909 hasConceptScore W42174909C202189072 @default.