Matches in SemOpenAlex for { <https://semopenalex.org/work/W42202159> ?p ?o ?g. }
- W42202159 abstract "The association between two variables is often of interest in data analysis and methodological research. Pearson's, Spearman's and Kendall's correlation coefficients are the most commonly used measures of monotone association, with the latter two usually suggested for non-normally distributed data. These three correlation coefficients can be represented as the differently weighted averages of the same concordance indicators. The weighting used in the Pearson's correlation coefficient could be preferable for reflecting monotone association in some types of continuous and not necessarily bivariate normal data.In this work, I investigate the intrinsic ability of Pearson's, Spearman's and Kendall's correlation coefficients to affect the statistical power of tests for monotone association in continuous data. This investigation is important in many fields including Public Health, since it can lead to guidelines that help save health research resources by reducing the number of inconclusive studies and enabling design of powerful studies with smaller sample sizes.The statistical power can be affected by both the structure of the employed correlation coefficient and type of a test statistic. Hence, I standardize the comparison of the intrinsic properties of the correlation coefficients by using a permutation test that is applicable to all of them. In the simulation study, I consider four types of continuous bivariate distributions composed of pairs of normal, log-normal, double exponential and t distributions. These distributions enable modeling the scenarios with different degrees of violation of normality with respect to skewness and kurtosis.As a result of the simulation study, I demonstrate that the Pearson's correlation coefficient could offer a substantial improvement in statistical power even for distributions with moderate skewness or excess kurtosis. Nonetheless, because of its known sensitivity to outliers, Pearson's correlation leads to a less powerful statistical test for distributions with extreme skewness or excess of kurtosis (where the datasets with outliers are more likely). In conclusion, the results of my investigation indicate that the Pearson's correlation coefficient could have significant advantages for continuous non-normal data which does not have obvious outliers. Thus, the shape of the distribution should not be a sole reason for not using the Pearson product moment correlation coefficient." @default.
- W42202159 created "2016-06-24" @default.
- W42202159 creator A5011994247 @default.
- W42202159 date "2010-09-24" @default.
- W42202159 modified "2023-09-27" @default.
- W42202159 title "PEARSON'S VERSUS SPEARMAN'S AND KENDALL'S CORRELATION COEFFICIENTS FOR CONTINUOUS DATA" @default.
- W42202159 cites W132711133 @default.
- W42202159 cites W1502197447 @default.
- W42202159 cites W1579925870 @default.
- W42202159 cites W1606015693 @default.
- W42202159 cites W178210587 @default.
- W42202159 cites W1963954483 @default.
- W42202159 cites W1980926065 @default.
- W42202159 cites W1985514943 @default.
- W42202159 cites W1989243075 @default.
- W42202159 cites W2009543464 @default.
- W42202159 cites W2026593185 @default.
- W42202159 cites W2057571146 @default.
- W42202159 cites W2073949566 @default.
- W42202159 cites W2104626092 @default.
- W42202159 cites W2124379907 @default.
- W42202159 cites W2128108079 @default.
- W42202159 cites W2319175394 @default.
- W42202159 cites W248917719 @default.
- W42202159 cites W568726942 @default.
- W42202159 cites W584635876 @default.
- W42202159 cites W622763911 @default.
- W42202159 hasPublicationYear "2010" @default.
- W42202159 type Work @default.
- W42202159 sameAs 42202159 @default.
- W42202159 citedByCount "26" @default.
- W42202159 countsByYear W422021592012 @default.
- W42202159 countsByYear W422021592013 @default.
- W42202159 countsByYear W422021592014 @default.
- W42202159 countsByYear W422021592015 @default.
- W42202159 countsByYear W422021592016 @default.
- W42202159 countsByYear W422021592017 @default.
- W42202159 countsByYear W422021592018 @default.
- W42202159 countsByYear W422021592019 @default.
- W42202159 countsByYear W422021592020 @default.
- W42202159 countsByYear W422021592021 @default.
- W42202159 crossrefType "journal-article" @default.
- W42202159 hasAuthorship W42202159A5011994247 @default.
- W42202159 hasConcept C101601086 @default.
- W42202159 hasConcept C105795698 @default.
- W42202159 hasConcept C117220453 @default.
- W42202159 hasConcept C121694360 @default.
- W42202159 hasConcept C122123141 @default.
- W42202159 hasConcept C122342681 @default.
- W42202159 hasConcept C129848803 @default.
- W42202159 hasConcept C159744936 @default.
- W42202159 hasConcept C166963901 @default.
- W42202159 hasConcept C169857963 @default.
- W42202159 hasConcept C2524010 @default.
- W42202159 hasConcept C2776157432 @default.
- W42202159 hasConcept C2780092901 @default.
- W42202159 hasConcept C33923547 @default.
- W42202159 hasConcept C40696583 @default.
- W42202159 hasConcept C55078378 @default.
- W42202159 hasConcept C64341305 @default.
- W42202159 hasConcept C66924754 @default.
- W42202159 hasConcept C87007009 @default.
- W42202159 hasConcept C89128539 @default.
- W42202159 hasConcept C91998498 @default.
- W42202159 hasConceptScore W42202159C101601086 @default.
- W42202159 hasConceptScore W42202159C105795698 @default.
- W42202159 hasConceptScore W42202159C117220453 @default.
- W42202159 hasConceptScore W42202159C121694360 @default.
- W42202159 hasConceptScore W42202159C122123141 @default.
- W42202159 hasConceptScore W42202159C122342681 @default.
- W42202159 hasConceptScore W42202159C129848803 @default.
- W42202159 hasConceptScore W42202159C159744936 @default.
- W42202159 hasConceptScore W42202159C166963901 @default.
- W42202159 hasConceptScore W42202159C169857963 @default.
- W42202159 hasConceptScore W42202159C2524010 @default.
- W42202159 hasConceptScore W42202159C2776157432 @default.
- W42202159 hasConceptScore W42202159C2780092901 @default.
- W42202159 hasConceptScore W42202159C33923547 @default.
- W42202159 hasConceptScore W42202159C40696583 @default.
- W42202159 hasConceptScore W42202159C55078378 @default.
- W42202159 hasConceptScore W42202159C64341305 @default.
- W42202159 hasConceptScore W42202159C66924754 @default.
- W42202159 hasConceptScore W42202159C87007009 @default.
- W42202159 hasConceptScore W42202159C89128539 @default.
- W42202159 hasConceptScore W42202159C91998498 @default.
- W42202159 hasLocation W422021591 @default.
- W42202159 hasOpenAccess W42202159 @default.
- W42202159 hasPrimaryLocation W422021591 @default.
- W42202159 hasRelatedWork W1496317909 @default.
- W42202159 hasRelatedWork W1542869478 @default.
- W42202159 hasRelatedWork W1576818901 @default.
- W42202159 hasRelatedWork W1596717185 @default.
- W42202159 hasRelatedWork W1973412776 @default.
- W42202159 hasRelatedWork W1981796233 @default.
- W42202159 hasRelatedWork W2008873125 @default.
- W42202159 hasRelatedWork W2024542106 @default.
- W42202159 hasRelatedWork W2025797714 @default.
- W42202159 hasRelatedWork W2033308452 @default.
- W42202159 hasRelatedWork W2034905961 @default.
- W42202159 hasRelatedWork W2044136864 @default.