Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220653535> ?p ?o ?g. }
- W4220653535 abstract "Abstract Deer (Cervidae) are key components of many ecosystems and estimating deer abundance or density is important to understanding these roles. Many field methods have been used to estimate deer abundance and density, but the factors determining where, when, and why a method was used, and its usefulness, have not been investigated. We systematically reviewed journal articles published during 2004–2018 to evaluate spatio‐temporal trends in study objectives, methodologies, and deer abundance and density estimates, and determine how they varied with biophysical and anthropogenic attributes. We also reviewed the precision and bias of deer abundance estimation methods. We found 3,870 deer abundance and density estimates. Most estimates (58%) were for white‐tailed deer ( Odocoileus virginianus ), red deer ( Cervus elaphus ), and roe deer ( Capreolus capreolus ). The 6 key methods used to estimate abundance and density were pedestrian sign (track or fecal) counts, pedestrian direct counts, vehicular direct counts, aerial direct counts, motion‐sensitive cameras, and harvest data. There were regional differences in the use of these methods, but a general pattern was a temporal shift from using harvest data, pedestrian direct counts, and aerial direct counts to using pedestrian sign counts and motion‐sensitive cameras. Only 32% of estimates were accompanied by a measure of precision. The most precise estimates were from vehicular spotlight counts and from capture–recapture analysis of images from motion‐sensitive cameras. For aerial direct counts, capture–recapture methods provided the most precise estimates. Bias was robustly assessed in only 16 studies. Most abundance estimates were negatively biased, but capture–recapture methods were the least biased. The usefulness of deer abundance and density estimates would be substantially improved by 1) reporting key methodological details, 2) robustly assessing bias, 3) reporting the precision of estimates, 4) using methods that increase and estimate detection probability, and 5) staying up to date on new methods. The automation of image analysis using machine learning should increase the accuracy and precision of abundance estimates from direct aerial counts (visible and thermal infrared, including from unmanned aerial vehicles [drones]) and motion‐sensitive cameras, and substantially reduce the time and cost burdens of manual image analysis." @default.
- W4220653535 created "2022-04-03" @default.
- W4220653535 creator A5012342304 @default.
- W4220653535 creator A5027070760 @default.
- W4220653535 creator A5027149095 @default.
- W4220653535 creator A5028994811 @default.
- W4220653535 creator A5043041011 @default.
- W4220653535 creator A5043087300 @default.
- W4220653535 creator A5080932158 @default.
- W4220653535 creator A5083563220 @default.
- W4220653535 date "2022-03-24" @default.
- W4220653535 modified "2023-10-14" @default.
- W4220653535 title "Methodology matters when estimating deer abundance: a global systematic review and recommendations for improvements" @default.
- W4220653535 cites W1487899538 @default.
- W4220653535 cites W1489407299 @default.
- W4220653535 cites W1501211144 @default.
- W4220653535 cites W1513618424 @default.
- W4220653535 cites W1595709311 @default.
- W4220653535 cites W1813527266 @default.
- W4220653535 cites W1970538481 @default.
- W4220653535 cites W1981302151 @default.
- W4220653535 cites W1982923155 @default.
- W4220653535 cites W1988558349 @default.
- W4220653535 cites W1992372744 @default.
- W4220653535 cites W2001058138 @default.
- W4220653535 cites W2031724808 @default.
- W4220653535 cites W2032180235 @default.
- W4220653535 cites W2035129093 @default.
- W4220653535 cites W2055032654 @default.
- W4220653535 cites W2067509666 @default.
- W4220653535 cites W2075101933 @default.
- W4220653535 cites W2076978601 @default.
- W4220653535 cites W2077639347 @default.
- W4220653535 cites W2078388329 @default.
- W4220653535 cites W2096971206 @default.
- W4220653535 cites W2099142958 @default.
- W4220653535 cites W2105965862 @default.
- W4220653535 cites W2106296259 @default.
- W4220653535 cites W2115206334 @default.
- W4220653535 cites W2120428481 @default.
- W4220653535 cites W2126891096 @default.
- W4220653535 cites W2128001438 @default.
- W4220653535 cites W2129841704 @default.
- W4220653535 cites W2143091964 @default.
- W4220653535 cites W2150466677 @default.
- W4220653535 cites W2153731457 @default.
- W4220653535 cites W2155115177 @default.
- W4220653535 cites W2155904060 @default.
- W4220653535 cites W2160364880 @default.
- W4220653535 cites W2161374186 @default.
- W4220653535 cites W2163991422 @default.
- W4220653535 cites W2164789059 @default.
- W4220653535 cites W2168456527 @default.
- W4220653535 cites W2177121469 @default.
- W4220653535 cites W2177412190 @default.
- W4220653535 cites W2313575412 @default.
- W4220653535 cites W2315551490 @default.
- W4220653535 cites W2315783261 @default.
- W4220653535 cites W2315802006 @default.
- W4220653535 cites W2317362952 @default.
- W4220653535 cites W2318806192 @default.
- W4220653535 cites W2319325349 @default.
- W4220653535 cites W2320843077 @default.
- W4220653535 cites W2323722282 @default.
- W4220653535 cites W2325738079 @default.
- W4220653535 cites W2326403187 @default.
- W4220653535 cites W2328221536 @default.
- W4220653535 cites W2329206696 @default.
- W4220653535 cites W2330094102 @default.
- W4220653535 cites W2335366738 @default.
- W4220653535 cites W2510606096 @default.
- W4220653535 cites W2533451505 @default.
- W4220653535 cites W2587254133 @default.
- W4220653535 cites W2592694159 @default.
- W4220653535 cites W2604387895 @default.
- W4220653535 cites W2768607238 @default.
- W4220653535 cites W2774503174 @default.
- W4220653535 cites W2794256331 @default.
- W4220653535 cites W2810030371 @default.
- W4220653535 cites W2896301178 @default.
- W4220653535 cites W2911609101 @default.
- W4220653535 cites W2945020140 @default.
- W4220653535 cites W2952113774 @default.
- W4220653535 cites W2975741437 @default.
- W4220653535 cites W2992135859 @default.
- W4220653535 cites W2994805677 @default.
- W4220653535 cites W2995926063 @default.
- W4220653535 cites W3003763401 @default.
- W4220653535 cites W3011346506 @default.
- W4220653535 cites W3012183986 @default.
- W4220653535 cites W3021841073 @default.
- W4220653535 cites W3024806531 @default.
- W4220653535 cites W3042227274 @default.
- W4220653535 cites W3161375846 @default.
- W4220653535 cites W4210759325 @default.
- W4220653535 cites W4244657300 @default.
- W4220653535 cites W4301861531 @default.
- W4220653535 doi "https://doi.org/10.1002/jwmg.22207" @default.
- W4220653535 hasPublicationYear "2022" @default.
- W4220653535 type Work @default.