Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220654793> ?p ?o ?g. }
- W4220654793 abstract "Abstract We present two new empirical models of radiation belt electron flux at geostationary orbit. GOES‐15 measurements of 0.8 MeV electrons were used to train a Nonlinear Autoregressive with Exogenous input (NARX) neural network for both modeling GOES‐15 flux values and an upper boundary condition scaling factor (BF). The GOES‐15 flux model utilizes an input and feedback delay of 2 and 2 time steps (i.e., 5 min time steps) with the most efficient number of hidden layers set to 10. Magnetic local time, Dst, Kp , solar wind dynamic pressure, AE, and solar wind velocity were found to perform as predicative indicators of GOES‐15 flux and therefore were used as the exogenous inputs. The NARX‐derived upper boundary condition scaling factor was used in conjunction with the Versatile Electron Radiation Belt (VERB) code to produce reconstructions of the radiation belts during the period of July–November 1990, independent of in‐situ observations. Here, Kp was chosen as the sole exogenous input to be more compatible with the VERB code. This Combined Release and Radiation Effects Satellite‐era reconstruction showcases the potential to use these neural network‐derived boundary conditions as a method of hindcasting the historical radiation belts. This study serves as a companion paper to another recently published study on reconstructing the radiation belts during Solar Cycles 17–24 (Saikin et al., 2021, https://doi.org/10.1029/2020sw002524 ), for which the results featured in this paper were used." @default.
- W4220654793 created "2022-04-03" @default.
- W4220654793 creator A5005094228 @default.
- W4220654793 creator A5029648780 @default.
- W4220654793 creator A5030646915 @default.
- W4220654793 creator A5033604510 @default.
- W4220654793 creator A5046732768 @default.
- W4220654793 creator A5064642116 @default.
- W4220654793 creator A5071862135 @default.
- W4220654793 creator A5075530823 @default.
- W4220654793 date "2022-05-01" @default.
- W4220654793 modified "2023-09-30" @default.
- W4220654793 title "NARX Neural Network Derivations of the Outer Boundary Radiation Belt Electron Flux" @default.
- W4220654793 cites W1499607812 @default.
- W4220654793 cites W1538292829 @default.
- W4220654793 cites W1581145848 @default.
- W4220654793 cites W1585753181 @default.
- W4220654793 cites W1605592869 @default.
- W4220654793 cites W1611872615 @default.
- W4220654793 cites W1646976779 @default.
- W4220654793 cites W1931494087 @default.
- W4220654793 cites W1943045868 @default.
- W4220654793 cites W1966072873 @default.
- W4220654793 cites W1966441931 @default.
- W4220654793 cites W1966942598 @default.
- W4220654793 cites W1974835220 @default.
- W4220654793 cites W1977311021 @default.
- W4220654793 cites W1983593748 @default.
- W4220654793 cites W2004654615 @default.
- W4220654793 cites W2004802777 @default.
- W4220654793 cites W2005242707 @default.
- W4220654793 cites W2005405387 @default.
- W4220654793 cites W2005546430 @default.
- W4220654793 cites W2008702929 @default.
- W4220654793 cites W2014349253 @default.
- W4220654793 cites W2016447952 @default.
- W4220654793 cites W2023610186 @default.
- W4220654793 cites W2029814160 @default.
- W4220654793 cites W2037531305 @default.
- W4220654793 cites W2048454225 @default.
- W4220654793 cites W2051667494 @default.
- W4220654793 cites W2054256464 @default.
- W4220654793 cites W2070407656 @default.
- W4220654793 cites W2071642070 @default.
- W4220654793 cites W2073414516 @default.
- W4220654793 cites W2088978982 @default.
- W4220654793 cites W2094760446 @default.
- W4220654793 cites W2104503686 @default.
- W4220654793 cites W2113754387 @default.
- W4220654793 cites W2121652230 @default.
- W4220654793 cites W2123821395 @default.
- W4220654793 cites W2147607435 @default.
- W4220654793 cites W2157481311 @default.
- W4220654793 cites W2164333388 @default.
- W4220654793 cites W2166509198 @default.
- W4220654793 cites W2169390684 @default.
- W4220654793 cites W2310655417 @default.
- W4220654793 cites W2323064125 @default.
- W4220654793 cites W2337226507 @default.
- W4220654793 cites W2342891113 @default.
- W4220654793 cites W2345174774 @default.
- W4220654793 cites W2511863788 @default.
- W4220654793 cites W2530667075 @default.
- W4220654793 cites W2544682969 @default.
- W4220654793 cites W2745035429 @default.
- W4220654793 cites W2766453266 @default.
- W4220654793 cites W2889908147 @default.
- W4220654793 cites W2904708574 @default.
- W4220654793 cites W2905104269 @default.
- W4220654793 cites W2910817225 @default.
- W4220654793 cites W2916499329 @default.
- W4220654793 cites W2920947047 @default.
- W4220654793 cites W2947109946 @default.
- W4220654793 cites W2962919783 @default.
- W4220654793 cites W2971491645 @default.
- W4220654793 cites W2980356402 @default.
- W4220654793 cites W2997400238 @default.
- W4220654793 cites W3005972570 @default.
- W4220654793 cites W3007417454 @default.
- W4220654793 cites W3027249270 @default.
- W4220654793 cites W3046632307 @default.
- W4220654793 cites W3126489807 @default.
- W4220654793 cites W3194101126 @default.
- W4220654793 doi "https://doi.org/10.1029/2021sw002774" @default.
- W4220654793 hasPublicationYear "2022" @default.
- W4220654793 type Work @default.
- W4220654793 citedByCount "4" @default.
- W4220654793 countsByYear W42206547932022 @default.
- W4220654793 countsByYear W42206547932023 @default.
- W4220654793 crossrefType "journal-article" @default.
- W4220654793 hasAuthorship W4220654793A5005094228 @default.
- W4220654793 hasAuthorship W4220654793A5029648780 @default.
- W4220654793 hasAuthorship W4220654793A5030646915 @default.
- W4220654793 hasAuthorship W4220654793A5033604510 @default.
- W4220654793 hasAuthorship W4220654793A5046732768 @default.
- W4220654793 hasAuthorship W4220654793A5064642116 @default.
- W4220654793 hasAuthorship W4220654793A5071862135 @default.
- W4220654793 hasAuthorship W4220654793A5075530823 @default.
- W4220654793 hasBestOaLocation W42206547931 @default.
- W4220654793 hasConcept C120665830 @default.