Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220654854> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4220654854 endingPage "11" @default.
- W4220654854 startingPage "1" @default.
- W4220654854 abstract "In this paper, a single English text is taken as the research object, and the automatic extraction method of text summary is studied using data-driven method. This paper takes a single text as the research object, establishes the connection relationship between article sentences, and proposes a method of automatic extraction of text summary based on graph model and topic model. The method combines the text graph model, complex network theory, and LDA topic model to construct a sentence synthesis scoring function to calculate the text single-sentence weights and output the sentences within the text threshold in descending order as text summaries. The algorithm improves the readability of the text summary while providing enough information for the text summary. In this paper, we propose a BERT-based topic-aware text summarization model based on a neural topic model. The approach uses the potential topic embedding representation encoded by the neural topic model to match with the embedding representation of BERT to guide topic generation to meet the requirements of semantic representation of text and explores topic inference and summary generation jointly in an end-to-end manner through the transformer architecture to capture semantic features while modelling long-range dependencies by a self-attentive mechanism. In this paper, we propose improvements based on pretrained models on both extractive and generative algorithms, making them enhanced for global information memory. Combining the advantages of both algorithms, a new joint model is proposed, which makes it possible to generate summaries that are more consistent with the original topic and have a reduced repetition rate for evenly distributed article information. Comparative experiments were conducted on several datasets and small uniformly distributed private datasets were constructed. In several comparative experiments, the evaluation metrics were improved by up to 2.5 percentage points, proving the effectiveness of the method, and a prototype system for an automatic abstract generation was built to demonstrate the results." @default.
- W4220654854 created "2022-04-03" @default.
- W4220654854 creator A5051254747 @default.
- W4220654854 date "2022-03-23" @default.
- W4220654854 modified "2023-10-14" @default.
- W4220654854 title "Construction and Application of a Data-Driven Abstract Extraction Model for English Text" @default.
- W4220654854 cites W2777772899 @default.
- W4220654854 cites W2803590544 @default.
- W4220654854 cites W2810782498 @default.
- W4220654854 cites W2902438672 @default.
- W4220654854 cites W2905097561 @default.
- W4220654854 cites W2918064207 @default.
- W4220654854 cites W2920247228 @default.
- W4220654854 cites W2944579633 @default.
- W4220654854 cites W2948353354 @default.
- W4220654854 cites W2973050065 @default.
- W4220654854 cites W2998350078 @default.
- W4220654854 cites W3005790807 @default.
- W4220654854 cites W3006937107 @default.
- W4220654854 cites W3010946599 @default.
- W4220654854 cites W3090323843 @default.
- W4220654854 cites W3092114477 @default.
- W4220654854 cites W3124465846 @default.
- W4220654854 cites W3135706671 @default.
- W4220654854 cites W3179399922 @default.
- W4220654854 cites W3204083252 @default.
- W4220654854 doi "https://doi.org/10.1155/2022/9497783" @default.
- W4220654854 hasPublicationYear "2022" @default.
- W4220654854 type Work @default.
- W4220654854 citedByCount "0" @default.
- W4220654854 crossrefType "journal-article" @default.
- W4220654854 hasAuthorship W4220654854A5051254747 @default.
- W4220654854 hasBestOaLocation W42206548541 @default.
- W4220654854 hasConcept C121332964 @default.
- W4220654854 hasConcept C132525143 @default.
- W4220654854 hasConcept C154945302 @default.
- W4220654854 hasConcept C165801399 @default.
- W4220654854 hasConcept C167966045 @default.
- W4220654854 hasConcept C170858558 @default.
- W4220654854 hasConcept C171686336 @default.
- W4220654854 hasConcept C204321447 @default.
- W4220654854 hasConcept C23123220 @default.
- W4220654854 hasConcept C2776214188 @default.
- W4220654854 hasConcept C2777530160 @default.
- W4220654854 hasConcept C2985684807 @default.
- W4220654854 hasConcept C39890363 @default.
- W4220654854 hasConcept C41008148 @default.
- W4220654854 hasConcept C41608201 @default.
- W4220654854 hasConcept C62520636 @default.
- W4220654854 hasConcept C66322947 @default.
- W4220654854 hasConcept C66945725 @default.
- W4220654854 hasConcept C80444323 @default.
- W4220654854 hasConceptScore W4220654854C121332964 @default.
- W4220654854 hasConceptScore W4220654854C132525143 @default.
- W4220654854 hasConceptScore W4220654854C154945302 @default.
- W4220654854 hasConceptScore W4220654854C165801399 @default.
- W4220654854 hasConceptScore W4220654854C167966045 @default.
- W4220654854 hasConceptScore W4220654854C170858558 @default.
- W4220654854 hasConceptScore W4220654854C171686336 @default.
- W4220654854 hasConceptScore W4220654854C204321447 @default.
- W4220654854 hasConceptScore W4220654854C23123220 @default.
- W4220654854 hasConceptScore W4220654854C2776214188 @default.
- W4220654854 hasConceptScore W4220654854C2777530160 @default.
- W4220654854 hasConceptScore W4220654854C2985684807 @default.
- W4220654854 hasConceptScore W4220654854C39890363 @default.
- W4220654854 hasConceptScore W4220654854C41008148 @default.
- W4220654854 hasConceptScore W4220654854C41608201 @default.
- W4220654854 hasConceptScore W4220654854C62520636 @default.
- W4220654854 hasConceptScore W4220654854C66322947 @default.
- W4220654854 hasConceptScore W4220654854C66945725 @default.
- W4220654854 hasConceptScore W4220654854C80444323 @default.
- W4220654854 hasLocation W42206548541 @default.
- W4220654854 hasLocation W42206548542 @default.
- W4220654854 hasOpenAccess W4220654854 @default.
- W4220654854 hasPrimaryLocation W42206548541 @default.
- W4220654854 hasRelatedWork W119947379 @default.
- W4220654854 hasRelatedWork W2093597205 @default.
- W4220654854 hasRelatedWork W2153272008 @default.
- W4220654854 hasRelatedWork W2389846579 @default.
- W4220654854 hasRelatedWork W2401226416 @default.
- W4220654854 hasRelatedWork W3205567301 @default.
- W4220654854 hasRelatedWork W4308478176 @default.
- W4220654854 hasRelatedWork W4323520239 @default.
- W4220654854 hasRelatedWork W4376138520 @default.
- W4220654854 hasRelatedWork W4379745340 @default.
- W4220654854 hasVolume "2022" @default.
- W4220654854 isParatext "false" @default.
- W4220654854 isRetracted "false" @default.
- W4220654854 workType "article" @default.