Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220655672> ?p ?o ?g. }
- W4220655672 abstract "The dynamical nature of COVID-19 cases in different parts of the world requires robust mathematical approaches for prediction and forecasting. In this study, we aim to (a) forecast future COVID-19 cases based on past infections, (b) predict current COVID-19 cases using PM2.5, temperature, and humidity data, using four different machine learning classifiers (Decision Tree, K-nearest neighbor, Support Vector Machine, and Random Forest). Based on RMSE values, k-nearest neighbor and support vector machine algorithms were found to be the best for predicting future incidences of COVID-19 based on past histories. From the RMSE values obtained, temperature was found to be the best predictor for number of COVID-19 cases, followed by relative humidity. Decision tree models was found to perform poorly in the prediction of COVID-19 cases considering particulate matter and atmospheric parameters as predictors. Our results suggests the possibility of predicting virus infection using machine learning. This will guide policy makers in proactive monitoring and control." @default.
- W4220655672 created "2022-04-03" @default.
- W4220655672 creator A5011024223 @default.
- W4220655672 creator A5014965571 @default.
- W4220655672 creator A5068302580 @default.
- W4220655672 date "2022-04-01" @default.
- W4220655672 modified "2023-09-30" @default.
- W4220655672 title "Predicting COVID‐19 Cases From Atmospheric Parameters Using Machine Learning Approach" @default.
- W4220655672 cites W1646153100 @default.
- W4220655672 cites W1964106166 @default.
- W4220655672 cites W2047612802 @default.
- W4220655672 cites W2051132791 @default.
- W4220655672 cites W2095979574 @default.
- W4220655672 cites W2607522440 @default.
- W4220655672 cites W2910870445 @default.
- W4220655672 cites W3014124559 @default.
- W4220655672 cites W3014347188 @default.
- W4220655672 cites W3014550480 @default.
- W4220655672 cites W3016538817 @default.
- W4220655672 cites W3031139335 @default.
- W4220655672 cites W3033384660 @default.
- W4220655672 cites W3033728805 @default.
- W4220655672 cites W3035592557 @default.
- W4220655672 cites W3036259678 @default.
- W4220655672 cites W3038780555 @default.
- W4220655672 cites W3038821093 @default.
- W4220655672 cites W3039556020 @default.
- W4220655672 cites W3041460502 @default.
- W4220655672 cites W3041809298 @default.
- W4220655672 cites W3042239862 @default.
- W4220655672 cites W3042316884 @default.
- W4220655672 cites W3067119061 @default.
- W4220655672 cites W3083550939 @default.
- W4220655672 cites W3089435459 @default.
- W4220655672 cites W3092136142 @default.
- W4220655672 cites W3113195410 @default.
- W4220655672 cites W3115424336 @default.
- W4220655672 cites W3115734648 @default.
- W4220655672 cites W3119631283 @default.
- W4220655672 cites W3119677064 @default.
- W4220655672 cites W3121555817 @default.
- W4220655672 cites W3122015775 @default.
- W4220655672 cites W3129060894 @default.
- W4220655672 cites W3135280609 @default.
- W4220655672 cites W3136896197 @default.
- W4220655672 cites W3138148883 @default.
- W4220655672 cites W3149452572 @default.
- W4220655672 cites W3159170196 @default.
- W4220655672 cites W3159392224 @default.
- W4220655672 cites W3160122104 @default.
- W4220655672 cites W3161582827 @default.
- W4220655672 cites W3165052748 @default.
- W4220655672 cites W3204539597 @default.
- W4220655672 cites W3211465100 @default.
- W4220655672 cites W4205775575 @default.
- W4220655672 cites W4235748132 @default.
- W4220655672 doi "https://doi.org/10.1029/2021gh000509" @default.
- W4220655672 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35415381" @default.
- W4220655672 hasPublicationYear "2022" @default.
- W4220655672 type Work @default.
- W4220655672 citedByCount "4" @default.
- W4220655672 countsByYear W42206556722022 @default.
- W4220655672 countsByYear W42206556722023 @default.
- W4220655672 crossrefType "journal-article" @default.
- W4220655672 hasAuthorship W4220655672A5011024223 @default.
- W4220655672 hasAuthorship W4220655672A5014965571 @default.
- W4220655672 hasAuthorship W4220655672A5068302580 @default.
- W4220655672 hasBestOaLocation W42206556722 @default.
- W4220655672 hasConcept C105795698 @default.
- W4220655672 hasConcept C113238511 @default.
- W4220655672 hasConcept C119857082 @default.
- W4220655672 hasConcept C12267149 @default.
- W4220655672 hasConcept C124101348 @default.
- W4220655672 hasConcept C132651083 @default.
- W4220655672 hasConcept C139945424 @default.
- W4220655672 hasConcept C142724271 @default.
- W4220655672 hasConcept C151420433 @default.
- W4220655672 hasConcept C153294291 @default.
- W4220655672 hasConcept C154945302 @default.
- W4220655672 hasConcept C158960510 @default.
- W4220655672 hasConcept C169258074 @default.
- W4220655672 hasConcept C18903297 @default.
- W4220655672 hasConcept C205649164 @default.
- W4220655672 hasConcept C2779134260 @default.
- W4220655672 hasConcept C3008058167 @default.
- W4220655672 hasConcept C33923547 @default.
- W4220655672 hasConcept C41008148 @default.
- W4220655672 hasConcept C42683663 @default.
- W4220655672 hasConcept C524204448 @default.
- W4220655672 hasConcept C71924100 @default.
- W4220655672 hasConcept C84525736 @default.
- W4220655672 hasConcept C86803240 @default.
- W4220655672 hasConceptScore W4220655672C105795698 @default.
- W4220655672 hasConceptScore W4220655672C113238511 @default.
- W4220655672 hasConceptScore W4220655672C119857082 @default.
- W4220655672 hasConceptScore W4220655672C12267149 @default.
- W4220655672 hasConceptScore W4220655672C124101348 @default.
- W4220655672 hasConceptScore W4220655672C132651083 @default.
- W4220655672 hasConceptScore W4220655672C139945424 @default.
- W4220655672 hasConceptScore W4220655672C142724271 @default.