Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220656052> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4220656052 endingPage "105383" @default.
- W4220656052 startingPage "105383" @default.
- W4220656052 abstract "Researchers have developed more intelligent, highly responsive, and efficient detection methods owing to the COVID-19 demands for more widespread diagnosis. The work done deals with developing an AI-based framework that can help radiologists and other healthcare professionals diagnose COVID-19 cases at a high level of accuracy. However, in the absence of publicly available CT datasets, the development of such AI tools can prove challenging. Therefore, an algorithm for performing automatic and accurate COVID-19 classification using Convolutional Neural Network (CNN), pre-trained model, and Sparrow search algorithm (SSA) on CT lung images was proposed. The pre-trained CNN models used are SeresNext50, SeresNext101, SeNet154, MobileNet, MobileNetV2, MobileNetV3Small, and MobileNetV3Large. In addition, the SSA will be used to optimize the different CNN and transfer learning(TL) hyperparameters to find the best configuration for the pre-trained model used and enhance its performance. Two datasets are used in the experiments. There are two classes in the first dataset, while three in the second. The authors combined two publicly available COVID-19 datasets as the first dataset, namely the COVID-19 Lung CT Scans and COVID-19 CT Scan Dataset. In total, 14,486 images were included in this study. The authors analyzed the Large COVID-19 CT scan slice dataset in the second dataset, which utilized 17,104 images. Compared to other pre-trained models on both classes datasets, MobileNetV3Large pre-trained is the best model. As far as the three-classes dataset is concerned, a model trained on SeNet154 is the best available. Results show that, when compared to other CNN models like LeNet-5 CNN, COVID faster R-CNN, Light CNN, Fuzzy + CNN, Dynamic CNN, CNN and Optimized CNN, the proposed Framework achieves the best accuracy of 99.74% (two classes) and 98% (three classes)." @default.
- W4220656052 created "2022-04-03" @default.
- W4220656052 creator A5002819875 @default.
- W4220656052 creator A5021472424 @default.
- W4220656052 creator A5028898335 @default.
- W4220656052 creator A5066303253 @default.
- W4220656052 creator A5067195972 @default.
- W4220656052 creator A5083427785 @default.
- W4220656052 date "2022-05-01" @default.
- W4220656052 modified "2023-09-27" @default.
- W4220656052 title "An automated diagnosis and classification of COVID-19 from chest CT images using a transfer learning-based convolutional neural network" @default.
- W4220656052 cites W2889723130 @default.
- W4220656052 cites W2998553334 @default.
- W4220656052 cites W3008985036 @default.
- W4220656052 cites W3016384104 @default.
- W4220656052 cites W3017345419 @default.
- W4220656052 cites W3019980738 @default.
- W4220656052 cites W3046500052 @default.
- W4220656052 cites W3118860867 @default.
- W4220656052 cites W3157400239 @default.
- W4220656052 cites W3164825001 @default.
- W4220656052 cites W3175127495 @default.
- W4220656052 cites W3180756314 @default.
- W4220656052 cites W3192455587 @default.
- W4220656052 cites W3197286338 @default.
- W4220656052 cites W3204450165 @default.
- W4220656052 cites W3210695447 @default.
- W4220656052 cites W3216762716 @default.
- W4220656052 cites W4200052220 @default.
- W4220656052 cites W4200076902 @default.
- W4220656052 cites W4200113603 @default.
- W4220656052 cites W4200198986 @default.
- W4220656052 cites W4200226120 @default.
- W4220656052 cites W4200361128 @default.
- W4220656052 doi "https://doi.org/10.1016/j.compbiomed.2022.105383" @default.
- W4220656052 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35290811" @default.
- W4220656052 hasPublicationYear "2022" @default.
- W4220656052 type Work @default.
- W4220656052 citedByCount "31" @default.
- W4220656052 countsByYear W42206560522022 @default.
- W4220656052 countsByYear W42206560522023 @default.
- W4220656052 crossrefType "journal-article" @default.
- W4220656052 hasAuthorship W4220656052A5002819875 @default.
- W4220656052 hasAuthorship W4220656052A5021472424 @default.
- W4220656052 hasAuthorship W4220656052A5028898335 @default.
- W4220656052 hasAuthorship W4220656052A5066303253 @default.
- W4220656052 hasAuthorship W4220656052A5067195972 @default.
- W4220656052 hasAuthorship W4220656052A5083427785 @default.
- W4220656052 hasBestOaLocation W42206560522 @default.
- W4220656052 hasConcept C108583219 @default.
- W4220656052 hasConcept C119857082 @default.
- W4220656052 hasConcept C142724271 @default.
- W4220656052 hasConcept C150899416 @default.
- W4220656052 hasConcept C153180895 @default.
- W4220656052 hasConcept C154945302 @default.
- W4220656052 hasConcept C2779134260 @default.
- W4220656052 hasConcept C3008058167 @default.
- W4220656052 hasConcept C41008148 @default.
- W4220656052 hasConcept C50644808 @default.
- W4220656052 hasConcept C524204448 @default.
- W4220656052 hasConcept C71924100 @default.
- W4220656052 hasConcept C81363708 @default.
- W4220656052 hasConcept C8642999 @default.
- W4220656052 hasConceptScore W4220656052C108583219 @default.
- W4220656052 hasConceptScore W4220656052C119857082 @default.
- W4220656052 hasConceptScore W4220656052C142724271 @default.
- W4220656052 hasConceptScore W4220656052C150899416 @default.
- W4220656052 hasConceptScore W4220656052C153180895 @default.
- W4220656052 hasConceptScore W4220656052C154945302 @default.
- W4220656052 hasConceptScore W4220656052C2779134260 @default.
- W4220656052 hasConceptScore W4220656052C3008058167 @default.
- W4220656052 hasConceptScore W4220656052C41008148 @default.
- W4220656052 hasConceptScore W4220656052C50644808 @default.
- W4220656052 hasConceptScore W4220656052C524204448 @default.
- W4220656052 hasConceptScore W4220656052C71924100 @default.
- W4220656052 hasConceptScore W4220656052C81363708 @default.
- W4220656052 hasConceptScore W4220656052C8642999 @default.
- W4220656052 hasFunder F4320322484 @default.
- W4220656052 hasLocation W42206560521 @default.
- W4220656052 hasLocation W42206560522 @default.
- W4220656052 hasLocation W42206560523 @default.
- W4220656052 hasOpenAccess W4220656052 @default.
- W4220656052 hasPrimaryLocation W42206560521 @default.
- W4220656052 hasRelatedWork W2738221750 @default.
- W4220656052 hasRelatedWork W2997709384 @default.
- W4220656052 hasRelatedWork W3018421652 @default.
- W4220656052 hasRelatedWork W3021430260 @default.
- W4220656052 hasRelatedWork W3091976719 @default.
- W4220656052 hasRelatedWork W3166467183 @default.
- W4220656052 hasRelatedWork W3173182854 @default.
- W4220656052 hasRelatedWork W3189091156 @default.
- W4220656052 hasRelatedWork W3192840557 @default.
- W4220656052 hasRelatedWork W4223905158 @default.
- W4220656052 hasVolume "144" @default.
- W4220656052 isParatext "false" @default.
- W4220656052 isRetracted "false" @default.
- W4220656052 workType "article" @default.