Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220656189> ?p ?o ?g. }
- W4220656189 endingPage "11781" @default.
- W4220656189 startingPage "11756" @default.
- W4220656189 abstract "Periodic forest fires destruct to biodiversity, ecosystem productivity and multiple ecosystem services. Forest fires are currently turning a leading cause of forest degradation. The principal objective of this research is to predict forest fire vulnerable zones over Similipal biosphere reserve (SBR; Odisha) using different machine learning (ML) models, such as support vector machine (SVM), random forest (RF) and multivariate adaptive regression splines (MARS). Different resampling methods (CV and bootstrap) have also been applied for optimizing the result and better accuracy. Results show that 10-fold cross validation (CV) technique performed best on SVM model (AUC = 0.83) whereas bootstrap performed best on RF (AUC = 0.80) and MARS model (AUC= 0.84). The main advantage of MARS model is that it only uses input variable and significantly increases the performance of the model. The novelty of this research is application of various ML algorithms through resampling techniques to reduce the biasness and improves the reliability of the models." @default.
- W4220656189 created "2022-04-03" @default.
- W4220656189 creator A5001867049 @default.
- W4220656189 creator A5013620990 @default.
- W4220656189 creator A5017683592 @default.
- W4220656189 creator A5055499065 @default.
- W4220656189 creator A5056637076 @default.
- W4220656189 date "2022-04-08" @default.
- W4220656189 modified "2023-10-18" @default.
- W4220656189 title "Forest fire susceptibility prediction using machine learning models with resampling algorithms, Northern part of Eastern Ghat Mountain range (India)" @default.
- W4220656189 cites W1908987440 @default.
- W4220656189 cites W1973009402 @default.
- W4220656189 cites W2008082679 @default.
- W4220656189 cites W2035233414 @default.
- W4220656189 cites W2046362362 @default.
- W4220656189 cites W2048577341 @default.
- W4220656189 cites W2060247330 @default.
- W4220656189 cites W2066725026 @default.
- W4220656189 cites W2070638918 @default.
- W4220656189 cites W2073792037 @default.
- W4220656189 cites W2080973951 @default.
- W4220656189 cites W2102201073 @default.
- W4220656189 cites W2133707588 @default.
- W4220656189 cites W2156909104 @default.
- W4220656189 cites W2171210136 @default.
- W4220656189 cites W2193684747 @default.
- W4220656189 cites W2225976211 @default.
- W4220656189 cites W2255133319 @default.
- W4220656189 cites W2297191737 @default.
- W4220656189 cites W2336149904 @default.
- W4220656189 cites W2337403412 @default.
- W4220656189 cites W2471200334 @default.
- W4220656189 cites W2567326027 @default.
- W4220656189 cites W2580219088 @default.
- W4220656189 cites W2601486684 @default.
- W4220656189 cites W2732297899 @default.
- W4220656189 cites W2761085791 @default.
- W4220656189 cites W2769344176 @default.
- W4220656189 cites W2769972173 @default.
- W4220656189 cites W2793334744 @default.
- W4220656189 cites W2883203069 @default.
- W4220656189 cites W2887685367 @default.
- W4220656189 cites W2888879635 @default.
- W4220656189 cites W2892199264 @default.
- W4220656189 cites W2907066318 @default.
- W4220656189 cites W2911964244 @default.
- W4220656189 cites W2912796358 @default.
- W4220656189 cites W2914326023 @default.
- W4220656189 cites W2920455132 @default.
- W4220656189 cites W2922202880 @default.
- W4220656189 cites W2922237835 @default.
- W4220656189 cites W2944366268 @default.
- W4220656189 cites W2958038879 @default.
- W4220656189 cites W2968347155 @default.
- W4220656189 cites W2972175198 @default.
- W4220656189 cites W2993767981 @default.
- W4220656189 cites W2999033244 @default.
- W4220656189 cites W3005928150 @default.
- W4220656189 cites W3006982381 @default.
- W4220656189 cites W3007602269 @default.
- W4220656189 cites W3007718445 @default.
- W4220656189 cites W3012074367 @default.
- W4220656189 cites W3014022811 @default.
- W4220656189 cites W3016359982 @default.
- W4220656189 cites W3034300825 @default.
- W4220656189 cites W3088527706 @default.
- W4220656189 cites W3090951340 @default.
- W4220656189 cites W3091142866 @default.
- W4220656189 cites W3099079911 @default.
- W4220656189 cites W3102380346 @default.
- W4220656189 cites W3154708782 @default.
- W4220656189 cites W3163551536 @default.
- W4220656189 cites W3166182933 @default.
- W4220656189 cites W3171502489 @default.
- W4220656189 cites W3173663079 @default.
- W4220656189 cites W3177490208 @default.
- W4220656189 cites W3194956593 @default.
- W4220656189 cites W3206143568 @default.
- W4220656189 cites W3209114277 @default.
- W4220656189 cites W4245324391 @default.
- W4220656189 cites W4250664506 @default.
- W4220656189 cites W4255917506 @default.
- W4220656189 cites W90653073 @default.
- W4220656189 doi "https://doi.org/10.1080/10106049.2022.2060323" @default.
- W4220656189 hasPublicationYear "2022" @default.
- W4220656189 type Work @default.
- W4220656189 citedByCount "5" @default.
- W4220656189 countsByYear W42206561892022 @default.
- W4220656189 countsByYear W42206561892023 @default.
- W4220656189 crossrefType "journal-article" @default.
- W4220656189 hasAuthorship W4220656189A5001867049 @default.
- W4220656189 hasAuthorship W4220656189A5013620990 @default.
- W4220656189 hasAuthorship W4220656189A5017683592 @default.
- W4220656189 hasAuthorship W4220656189A5055499065 @default.
- W4220656189 hasAuthorship W4220656189A5056637076 @default.
- W4220656189 hasConcept C11413529 @default.
- W4220656189 hasConcept C119857082 @default.
- W4220656189 hasConcept C121332964 @default.