Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220657176> ?p ?o ?g. }
- W4220657176 endingPage "2711" @default.
- W4220657176 startingPage "2705" @default.
- W4220657176 abstract "Protein structure can be severely disrupted by frameshift and non-sense mutations at specific positions in the protein sequence. Frameshift and non-sense mutation cases can also be found in healthy individuals. A method to distinguish neutral and potentially disease-associated frameshift and non-sense mutations is of practical and fundamental importance. It would allow researchers to rapidly screen out the potentially pathogenic sites from a large number of mutated genes and then use these sites as drug targets to speed up diagnosis and improve access to treatment. The problem of how to distinguish between neutral and potentially disease-associated frameshift and non-sense mutations remains under-researched.We built a Transformer-based neural network model to predict the pathogenicity of frameshift and non-sense mutations on protein features and named it TransPPMP. The feature matrix of contextual sequences computed by the ESM pre-training model, type of mutation residue and the auxiliary features, including structure and function information, are combined as input features, and the focal loss function is designed to solve the sample imbalance problem during the training. In 10-fold cross-validation and independent blind test set, TransPPMP showed good robust performance and absolute advantages in all evaluation metrics compared with four other advanced methods, namely, ENTPRISE-X, VEST-indel, DDIG-in and CADD. In addition, we demonstrate the usefulness of the multi-head attention mechanism in Transformer to predict the pathogenicity of mutations-not only can multiple self-attention heads learn local and global interactions but also functional sites with a large influence on the mutated residue can be captured by attention focus. These could offer useful clues to study the pathogenicity mechanism of human complex diseases for which traditional machine learning methods fall short.TransPPMP is available at https://github.com/lennylv/TransPPMP.Supplementary data are available at Bioinformatics online." @default.
- W4220657176 created "2022-04-03" @default.
- W4220657176 creator A5010017304 @default.
- W4220657176 creator A5061252858 @default.
- W4220657176 creator A5061966798 @default.
- W4220657176 creator A5064852381 @default.
- W4220657176 creator A5073740698 @default.
- W4220657176 date "2022-03-28" @default.
- W4220657176 modified "2023-09-29" @default.
- W4220657176 title "OUP accepted manuscript" @default.
- W4220657176 cites W1543773936 @default.
- W4220657176 cites W1900984040 @default.
- W4220657176 cites W1912672559 @default.
- W4220657176 cites W1979315776 @default.
- W4220657176 cites W1987754412 @default.
- W4220657176 cites W1990862775 @default.
- W4220657176 cites W1992014969 @default.
- W4220657176 cites W1992880766 @default.
- W4220657176 cites W2004854771 @default.
- W4220657176 cites W2006770045 @default.
- W4220657176 cites W2007089471 @default.
- W4220657176 cites W2051978340 @default.
- W4220657176 cites W2059145105 @default.
- W4220657176 cites W2096777589 @default.
- W4220657176 cites W2097606916 @default.
- W4220657176 cites W2116836989 @default.
- W4220657176 cites W2123960992 @default.
- W4220657176 cites W2139814263 @default.
- W4220657176 cites W2158714788 @default.
- W4220657176 cites W2160995259 @default.
- W4220657176 cites W2208335363 @default.
- W4220657176 cites W2276848127 @default.
- W4220657176 cites W2474991972 @default.
- W4220657176 cites W2779236324 @default.
- W4220657176 cites W2802948002 @default.
- W4220657176 cites W2884561390 @default.
- W4220657176 cites W2936956377 @default.
- W4220657176 cites W3121000782 @default.
- W4220657176 cites W3132630320 @default.
- W4220657176 cites W3144701084 @default.
- W4220657176 cites W3146944767 @default.
- W4220657176 cites W3177828909 @default.
- W4220657176 cites W3186179742 @default.
- W4220657176 doi "https://doi.org/10.1093/bioinformatics/btac188" @default.
- W4220657176 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35561183" @default.
- W4220657176 hasPublicationYear "2022" @default.
- W4220657176 type Work @default.
- W4220657176 citedByCount "0" @default.
- W4220657176 crossrefType "journal-article" @default.
- W4220657176 hasAuthorship W4220657176A5010017304 @default.
- W4220657176 hasAuthorship W4220657176A5061252858 @default.
- W4220657176 hasAuthorship W4220657176A5061966798 @default.
- W4220657176 hasAuthorship W4220657176A5064852381 @default.
- W4220657176 hasAuthorship W4220657176A5073740698 @default.
- W4220657176 hasConcept C104317684 @default.
- W4220657176 hasConcept C11413529 @default.
- W4220657176 hasConcept C119054055 @default.
- W4220657176 hasConcept C119857082 @default.
- W4220657176 hasConcept C135763542 @default.
- W4220657176 hasConcept C153209595 @default.
- W4220657176 hasConcept C154945302 @default.
- W4220657176 hasConcept C29906990 @default.
- W4220657176 hasConcept C41008148 @default.
- W4220657176 hasConcept C501734568 @default.
- W4220657176 hasConcept C54355233 @default.
- W4220657176 hasConcept C70721500 @default.
- W4220657176 hasConcept C86803240 @default.
- W4220657176 hasConceptScore W4220657176C104317684 @default.
- W4220657176 hasConceptScore W4220657176C11413529 @default.
- W4220657176 hasConceptScore W4220657176C119054055 @default.
- W4220657176 hasConceptScore W4220657176C119857082 @default.
- W4220657176 hasConceptScore W4220657176C135763542 @default.
- W4220657176 hasConceptScore W4220657176C153209595 @default.
- W4220657176 hasConceptScore W4220657176C154945302 @default.
- W4220657176 hasConceptScore W4220657176C29906990 @default.
- W4220657176 hasConceptScore W4220657176C41008148 @default.
- W4220657176 hasConceptScore W4220657176C501734568 @default.
- W4220657176 hasConceptScore W4220657176C54355233 @default.
- W4220657176 hasConceptScore W4220657176C70721500 @default.
- W4220657176 hasConceptScore W4220657176C86803240 @default.
- W4220657176 hasIssue "10" @default.
- W4220657176 hasLocation W42206571761 @default.
- W4220657176 hasLocation W42206571762 @default.
- W4220657176 hasOpenAccess W4220657176 @default.
- W4220657176 hasPrimaryLocation W42206571761 @default.
- W4220657176 hasRelatedWork W1984359833 @default.
- W4220657176 hasRelatedWork W2007878960 @default.
- W4220657176 hasRelatedWork W2009224973 @default.
- W4220657176 hasRelatedWork W2012172239 @default.
- W4220657176 hasRelatedWork W2019258947 @default.
- W4220657176 hasRelatedWork W2098533677 @default.
- W4220657176 hasRelatedWork W2135932455 @default.
- W4220657176 hasRelatedWork W2162724184 @default.
- W4220657176 hasRelatedWork W2377037724 @default.
- W4220657176 hasRelatedWork W4281651212 @default.
- W4220657176 hasVolume "38" @default.
- W4220657176 isParatext "false" @default.
- W4220657176 isRetracted "false" @default.