Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220657685> ?p ?o ?g. }
- W4220657685 endingPage "107224" @default.
- W4220657685 startingPage "107224" @default.
- W4220657685 abstract "In silico prediction of chemical ecotoxicity (HC50) represents an important complement to improve in vivo and in vitro toxicological assessment of manufactured chemicals. Recent application of machine learning models to predict chemical HC50 yields variable prediction performance that depends on effectively learning chemical representations from high-dimension data. To improve HC50 prediction performance, we developed an autoencoder model by learning latent space chemical embeddings. This novel approach achieved state-of-the-art prediction performance of HC50 with R2 of 0.668 ± 0.003 and mean absolute error (MAE) of 0.572 ± 0.001, and outperformed other dimension reduction methods including principal component analysis (PCA) (R2 = 0.601 ± 0.031 and MAE = 0.629 ± 0.005), kernel PCA (R2 = 0.631 ± 0.008 and MAE = 0.625 ± 0.006), and uniform manifold approximation and projection dimensionality reduction (R2 = 0.400 ± 0.008 and MAE = 0.801 ± 0.002). A simple linear layer with chemical embeddings learned from the autoencoder model performed better than random forest (R2 = 0.663 ± 0.007 and MAE = 0.591 ± 0.008), fully connected neural network (R2 = 0.614 ± 0.016 and MAE = 0.610 ± 0.008), least absolute shrinkage and selection operator (R2 = 0.617 ± 0.037 and MAE = 0.619 ± 0.007), and ridge regression (R2 = 0.638 ± 0.007 and MAE = 0.613 ± 0.005) using unlearned raw input features. Our results highlighted the usefulness of learning latent chemical representations, and our autoencoder model provides an alternative approach for robust HC50 prediction." @default.
- W4220657685 created "2022-04-03" @default.
- W4220657685 creator A5018452412 @default.
- W4220657685 creator A5025736571 @default.
- W4220657685 creator A5030519998 @default.
- W4220657685 creator A5069636788 @default.
- W4220657685 date "2022-05-01" @default.
- W4220657685 modified "2023-10-10" @default.
- W4220657685 title "Predicting chemical ecotoxicity by learning latent space chemical representations" @default.
- W4220657685 cites W1501357757 @default.
- W4220657685 cites W1587559447 @default.
- W4220657685 cites W1968621055 @default.
- W4220657685 cites W2015928143 @default.
- W4220657685 cites W2025768430 @default.
- W4220657685 cites W2033757486 @default.
- W4220657685 cites W2054716083 @default.
- W4220657685 cites W2074681440 @default.
- W4220657685 cites W2081659180 @default.
- W4220657685 cites W2089468765 @default.
- W4220657685 cites W2100495367 @default.
- W4220657685 cites W2147058642 @default.
- W4220657685 cites W2163922914 @default.
- W4220657685 cites W2528305538 @default.
- W4220657685 cites W2889326414 @default.
- W4220657685 cites W2892989383 @default.
- W4220657685 cites W2902688048 @default.
- W4220657685 cites W2919115771 @default.
- W4220657685 cites W2968084595 @default.
- W4220657685 cites W2973043695 @default.
- W4220657685 cites W2995744115 @default.
- W4220657685 cites W3039661983 @default.
- W4220657685 cites W3045350530 @default.
- W4220657685 cites W3118507387 @default.
- W4220657685 cites W3122806290 @default.
- W4220657685 cites W3152939161 @default.
- W4220657685 cites W3158507782 @default.
- W4220657685 doi "https://doi.org/10.1016/j.envint.2022.107224" @default.
- W4220657685 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35395577" @default.
- W4220657685 hasPublicationYear "2022" @default.
- W4220657685 type Work @default.
- W4220657685 citedByCount "4" @default.
- W4220657685 countsByYear W42206576852022 @default.
- W4220657685 countsByYear W42206576852023 @default.
- W4220657685 crossrefType "journal-article" @default.
- W4220657685 hasAuthorship W4220657685A5018452412 @default.
- W4220657685 hasAuthorship W4220657685A5025736571 @default.
- W4220657685 hasAuthorship W4220657685A5030519998 @default.
- W4220657685 hasAuthorship W4220657685A5069636788 @default.
- W4220657685 hasBestOaLocation W42206576851 @default.
- W4220657685 hasConcept C101738243 @default.
- W4220657685 hasConcept C114614502 @default.
- W4220657685 hasConcept C119857082 @default.
- W4220657685 hasConcept C153180895 @default.
- W4220657685 hasConcept C154945302 @default.
- W4220657685 hasConcept C185592680 @default.
- W4220657685 hasConcept C186060115 @default.
- W4220657685 hasConcept C27438332 @default.
- W4220657685 hasConcept C33923547 @default.
- W4220657685 hasConcept C41008148 @default.
- W4220657685 hasConcept C50644808 @default.
- W4220657685 hasConcept C55493867 @default.
- W4220657685 hasConcept C70518039 @default.
- W4220657685 hasConcept C74187038 @default.
- W4220657685 hasConcept C74193536 @default.
- W4220657685 hasConcept C86803240 @default.
- W4220657685 hasConcept C99726746 @default.
- W4220657685 hasConceptScore W4220657685C101738243 @default.
- W4220657685 hasConceptScore W4220657685C114614502 @default.
- W4220657685 hasConceptScore W4220657685C119857082 @default.
- W4220657685 hasConceptScore W4220657685C153180895 @default.
- W4220657685 hasConceptScore W4220657685C154945302 @default.
- W4220657685 hasConceptScore W4220657685C185592680 @default.
- W4220657685 hasConceptScore W4220657685C186060115 @default.
- W4220657685 hasConceptScore W4220657685C27438332 @default.
- W4220657685 hasConceptScore W4220657685C33923547 @default.
- W4220657685 hasConceptScore W4220657685C41008148 @default.
- W4220657685 hasConceptScore W4220657685C50644808 @default.
- W4220657685 hasConceptScore W4220657685C55493867 @default.
- W4220657685 hasConceptScore W4220657685C70518039 @default.
- W4220657685 hasConceptScore W4220657685C74187038 @default.
- W4220657685 hasConceptScore W4220657685C74193536 @default.
- W4220657685 hasConceptScore W4220657685C86803240 @default.
- W4220657685 hasConceptScore W4220657685C99726746 @default.
- W4220657685 hasFunder F4320337361 @default.
- W4220657685 hasLocation W42206576851 @default.
- W4220657685 hasLocation W42206576852 @default.
- W4220657685 hasLocation W42206576853 @default.
- W4220657685 hasLocation W42206576854 @default.
- W4220657685 hasOpenAccess W4220657685 @default.
- W4220657685 hasPrimaryLocation W42206576851 @default.
- W4220657685 hasRelatedWork W2091080939 @default.
- W4220657685 hasRelatedWork W2145759202 @default.
- W4220657685 hasRelatedWork W2156005575 @default.
- W4220657685 hasRelatedWork W2539272015 @default.
- W4220657685 hasRelatedWork W2772780115 @default.
- W4220657685 hasRelatedWork W2897995864 @default.
- W4220657685 hasRelatedWork W2912687981 @default.
- W4220657685 hasRelatedWork W2998168123 @default.