Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220658052> ?p ?o ?g. }
- W4220658052 endingPage "101385" @default.
- W4220658052 startingPage "101385" @default.
- W4220658052 abstract "Accurate modeling of urban climate is essential to predict potential environmental risks in cities. Urban datasets, such as urban land use and urban canopy parameters (UCPs), are key input data for urban climate models and largely affect their performance. However, access to reliable urban datasets is a challenge, especially in fast urbanizing countries. In this study, we developed a high-resolution national urban dataset in China (NUDC) for the WRF/urban modeling system and evaluated its effect on urban climate modeling. Specifically, an optimization method based on building morphology was proposed to classify urban land use types. The key UCPs, including building height and width, street width, surface imperviousness, and anthropogenic heat flux, were calculated for both single-layer Urban Canopy Model (UCM) and multiple-layer Building Energy Parameterization (BEP). The results show that the derived morphological-based urban land use classification could better reflect the urban characteristics, compared to the socioeconomic-function-based classification. The UCPs varied largely in spatial within and across the cities. The integration of the developed urban land use and UCPs datasets significantly improved the representation of urban canopy characteristics, contributing to a more accurate modeling of near-surface air temperature, humidity, and wind in urban areas. The UCM performed better in the modeling of air temperature and humidity, while the BEP performed better in the modeling of wind speed. The newly developed NUDC can advance the study of urban climate and improve the prediction of potential urban environmental risks in China." @default.
- W4220658052 created "2022-04-03" @default.
- W4220658052 creator A5001272936 @default.
- W4220658052 creator A5006739040 @default.
- W4220658052 creator A5030660072 @default.
- W4220658052 creator A5059878178 @default.
- W4220658052 creator A5068338514 @default.
- W4220658052 creator A5091665385 @default.
- W4220658052 date "2022-07-01" @default.
- W4220658052 modified "2023-09-26" @default.
- W4220658052 title "Improving the WRF/urban modeling system in China by developing a national urban dataset" @default.
- W4220658052 cites W136532476 @default.
- W4220658052 cites W1911420897 @default.
- W4220658052 cites W1968571511 @default.
- W4220658052 cites W1983322114 @default.
- W4220658052 cites W1987238719 @default.
- W4220658052 cites W1993064731 @default.
- W4220658052 cites W1995391746 @default.
- W4220658052 cites W2001645910 @default.
- W4220658052 cites W2001799731 @default.
- W4220658052 cites W2023383261 @default.
- W4220658052 cites W2030737358 @default.
- W4220658052 cites W2052326455 @default.
- W4220658052 cites W2070234862 @default.
- W4220658052 cites W2076053298 @default.
- W4220658052 cites W2076520289 @default.
- W4220658052 cites W2078191571 @default.
- W4220658052 cites W2083339292 @default.
- W4220658052 cites W2087485762 @default.
- W4220658052 cites W2153906556 @default.
- W4220658052 cites W2162063693 @default.
- W4220658052 cites W2163883764 @default.
- W4220658052 cites W2179912439 @default.
- W4220658052 cites W2474464564 @default.
- W4220658052 cites W2507269236 @default.
- W4220658052 cites W2512410850 @default.
- W4220658052 cites W2553641762 @default.
- W4220658052 cites W2637981175 @default.
- W4220658052 cites W2736341542 @default.
- W4220658052 cites W2740438842 @default.
- W4220658052 cites W2752120742 @default.
- W4220658052 cites W2760841452 @default.
- W4220658052 cites W2791956878 @default.
- W4220658052 cites W2794835680 @default.
- W4220658052 cites W2799769542 @default.
- W4220658052 cites W2895321005 @default.
- W4220658052 cites W2896102698 @default.
- W4220658052 cites W2917253245 @default.
- W4220658052 cites W2940694102 @default.
- W4220658052 cites W2969429595 @default.
- W4220658052 cites W2971795275 @default.
- W4220658052 cites W2972202920 @default.
- W4220658052 cites W2988224823 @default.
- W4220658052 cites W2991401386 @default.
- W4220658052 cites W2993303109 @default.
- W4220658052 cites W3005497904 @default.
- W4220658052 cites W3011121470 @default.
- W4220658052 cites W3025949386 @default.
- W4220658052 cites W3043323675 @default.
- W4220658052 cites W3068784285 @default.
- W4220658052 cites W3118477051 @default.
- W4220658052 cites W3121084741 @default.
- W4220658052 cites W3127721640 @default.
- W4220658052 cites W3146570006 @default.
- W4220658052 cites W3157345478 @default.
- W4220658052 cites W3157412621 @default.
- W4220658052 cites W3162740658 @default.
- W4220658052 doi "https://doi.org/10.1016/j.gsf.2022.101385" @default.
- W4220658052 hasPublicationYear "2022" @default.
- W4220658052 type Work @default.
- W4220658052 citedByCount "4" @default.
- W4220658052 countsByYear W42206580522022 @default.
- W4220658052 countsByYear W42206580522023 @default.
- W4220658052 crossrefType "journal-article" @default.
- W4220658052 hasAuthorship W4220658052A5001272936 @default.
- W4220658052 hasAuthorship W4220658052A5006739040 @default.
- W4220658052 hasAuthorship W4220658052A5030660072 @default.
- W4220658052 hasAuthorship W4220658052A5059878178 @default.
- W4220658052 hasAuthorship W4220658052A5068338514 @default.
- W4220658052 hasAuthorship W4220658052A5091665385 @default.
- W4220658052 hasBestOaLocation W42206580521 @default.
- W4220658052 hasConcept C127413603 @default.
- W4220658052 hasConcept C133204551 @default.
- W4220658052 hasConcept C136264566 @default.
- W4220658052 hasConcept C147176958 @default.
- W4220658052 hasConcept C153294291 @default.
- W4220658052 hasConcept C158049464 @default.
- W4220658052 hasConcept C161067210 @default.
- W4220658052 hasConcept C162324750 @default.
- W4220658052 hasConcept C205649164 @default.
- W4220658052 hasConcept C2778368647 @default.
- W4220658052 hasConcept C2779090739 @default.
- W4220658052 hasConcept C39432304 @default.
- W4220658052 hasConcept C39853841 @default.
- W4220658052 hasConcept C49545453 @default.
- W4220658052 hasConcept C50522688 @default.
- W4220658052 hasConcept C54005896 @default.
- W4220658052 hasConceptScore W4220658052C127413603 @default.