Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220661134> ?p ?o ?g. }
- W4220661134 endingPage "127716" @default.
- W4220661134 startingPage "127716" @default.
- W4220661134 abstract "This study presents the strengths of polynomial chaos-kriging (PCK), a new surrogate model that merges polynomial chaos extension (PCE) and Gaussian process with kriging variance. This combination enabled streamflow prediction for extreme events that deviated significantly from the trained data space, and allowed for quantifying predictive uncertainty robustly and efficiently. The uncertainty quantification results to eight testing flood events through a modeling framework that applies generalized likelihood uncertainty estimation (GLUE) to surrogate models are as follows. (1) PCK outperformed PCE and ordinary kriging (OK) in mimicking predictive and sensitive behaviors of the original model with a smaller-sized training dataset. (2) Three surrogate models trained on the identical dataset exhibited equivalent predictability with the original model for six smaller events similar to their training data space. However, for two extreme events, which differed significantly from the training set, only PCK was found to accurately predict the hydrograph and flood peaks. (3) Since two types of acceptance thresholds, defined here as “accuracy-aimed” or “efficiency-aimed” threshold, have their own pros and cons, the type and size of the threshold should be determined depending on the availability of computational resources and the degree of accuracy needed. (4) A new “performance score” is proposed here to assess the overall performance of the surrogate models. This compensates for situations in which the performance of a surrogate model can be misjudged through individual indices of efficiency or accuracy in the process of uncertainty quantification." @default.
- W4220661134 created "2022-04-03" @default.
- W4220661134 creator A5061034390 @default.
- W4220661134 creator A5067905786 @default.
- W4220661134 date "2022-06-01" @default.
- W4220661134 modified "2023-09-29" @default.
- W4220661134 title "Robust and efficient uncertainty quantification for extreme events that deviate significantly from the training dataset using polynomial chaos-kriging" @default.
- W4220661134 cites W1512208174 @default.
- W4220661134 cites W1528483814 @default.
- W4220661134 cites W1537396274 @default.
- W4220661134 cites W1559556432 @default.
- W4220661134 cites W1893022032 @default.
- W4220661134 cites W1905885146 @default.
- W4220661134 cites W1919296332 @default.
- W4220661134 cites W1932499509 @default.
- W4220661134 cites W1935773568 @default.
- W4220661134 cites W1965068681 @default.
- W4220661134 cites W1986759396 @default.
- W4220661134 cites W1991921673 @default.
- W4220661134 cites W2007535697 @default.
- W4220661134 cites W2014017508 @default.
- W4220661134 cites W2014181466 @default.
- W4220661134 cites W2018159038 @default.
- W4220661134 cites W2020821169 @default.
- W4220661134 cites W2025720061 @default.
- W4220661134 cites W2034831667 @default.
- W4220661134 cites W2039155799 @default.
- W4220661134 cites W2043170151 @default.
- W4220661134 cites W2045355467 @default.
- W4220661134 cites W2049774453 @default.
- W4220661134 cites W2060059902 @default.
- W4220661134 cites W2081346522 @default.
- W4220661134 cites W2083029259 @default.
- W4220661134 cites W2101589741 @default.
- W4220661134 cites W2102059395 @default.
- W4220661134 cites W2114291377 @default.
- W4220661134 cites W2117319840 @default.
- W4220661134 cites W2120828633 @default.
- W4220661134 cites W2124738823 @default.
- W4220661134 cites W2155633525 @default.
- W4220661134 cites W2256307465 @default.
- W4220661134 cites W2313192261 @default.
- W4220661134 cites W2315483240 @default.
- W4220661134 cites W2321504594 @default.
- W4220661134 cites W2508329103 @default.
- W4220661134 cites W2521488166 @default.
- W4220661134 cites W2560442033 @default.
- W4220661134 cites W2567548204 @default.
- W4220661134 cites W2576484085 @default.
- W4220661134 cites W2588649433 @default.
- W4220661134 cites W2597522655 @default.
- W4220661134 cites W2765427877 @default.
- W4220661134 cites W2895161380 @default.
- W4220661134 cites W2907224373 @default.
- W4220661134 cites W2910294744 @default.
- W4220661134 cites W2922360136 @default.
- W4220661134 cites W2946971318 @default.
- W4220661134 cites W2959031563 @default.
- W4220661134 cites W2974923159 @default.
- W4220661134 cites W2981906852 @default.
- W4220661134 cites W2989857225 @default.
- W4220661134 cites W2998039397 @default.
- W4220661134 cites W3001287763 @default.
- W4220661134 cites W3004571839 @default.
- W4220661134 cites W3008287630 @default.
- W4220661134 cites W3023909706 @default.
- W4220661134 cites W3043868445 @default.
- W4220661134 cites W3088538572 @default.
- W4220661134 cites W3092026988 @default.
- W4220661134 cites W3102100346 @default.
- W4220661134 cites W3103293247 @default.
- W4220661134 cites W3133512066 @default.
- W4220661134 cites W3160087079 @default.
- W4220661134 cites W3164646841 @default.
- W4220661134 cites W3195613438 @default.
- W4220661134 cites W3201955788 @default.
- W4220661134 cites W3206044043 @default.
- W4220661134 cites W77393038 @default.
- W4220661134 doi "https://doi.org/10.1016/j.jhydrol.2022.127716" @default.
- W4220661134 hasPublicationYear "2022" @default.
- W4220661134 type Work @default.
- W4220661134 citedByCount "8" @default.
- W4220661134 countsByYear W42206611342022 @default.
- W4220661134 countsByYear W42206611342023 @default.
- W4220661134 crossrefType "journal-article" @default.
- W4220661134 hasAuthorship W4220661134A5061034390 @default.
- W4220661134 hasAuthorship W4220661134A5067905786 @default.
- W4220661134 hasConcept C105795698 @default.
- W4220661134 hasConcept C121332964 @default.
- W4220661134 hasConcept C121955636 @default.
- W4220661134 hasConcept C131675550 @default.
- W4220661134 hasConcept C138885662 @default.
- W4220661134 hasConcept C142806159 @default.
- W4220661134 hasConcept C144133560 @default.
- W4220661134 hasConcept C158622935 @default.
- W4220661134 hasConcept C159985019 @default.
- W4220661134 hasConcept C163716315 @default.
- W4220661134 hasConcept C192562407 @default.