Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220665726> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4220665726 endingPage "172" @default.
- W4220665726 startingPage "167" @default.
- W4220665726 abstract "Background: Data collection from medicine and biomedical science is becoming a large task and increasingly complicated with each passing day. Machine learning methods have been applied to elucidate interactions between genes and genes and their environment.Current Concepts: Many machine learning methods have been used to determine the statistical meaning or relationship in the prediction or progression of diseases through the creation of causal networks based on medical big data. Through these analyses, the occurrence and progression of diseases have been shown to be related to several genes and environmental factors. However, these methods cannot identify the key upstream regulators inferred from genomic, clinical, and environmental medical data.Discussion and Conclusion: The causal Bayesian network (CBN) is a machine learning method that can be used to understand a causal network inferred from the gene expression data. The CBN can help identify the key upstream regulators through examining the causal network inferred from medical big data having genomic information. We can easily improve the clinical outcome through regulation of these identified key upstream factors. Therefore, the CBN may be a powerful and flexible tool in the era of precision medicine." @default.
- W4220665726 created "2022-04-03" @default.
- W4220665726 creator A5035340812 @default.
- W4220665726 creator A5041034837 @default.
- W4220665726 date "2022-03-10" @default.
- W4220665726 modified "2023-10-18" @default.
- W4220665726 title "Development of a graphical model of causal gene regulatory networks using medical big data and Bayesian machine learning" @default.
- W4220665726 cites W1979268377 @default.
- W4220665726 cites W2046604328 @default.
- W4220665726 cites W2061978896 @default.
- W4220665726 cites W2065178488 @default.
- W4220665726 cites W2073928485 @default.
- W4220665726 cites W2118258530 @default.
- W4220665726 cites W2509418340 @default.
- W4220665726 cites W2904668179 @default.
- W4220665726 cites W2921518676 @default.
- W4220665726 cites W3093979284 @default.
- W4220665726 doi "https://doi.org/10.5124/jkma.2022.65.3.167" @default.
- W4220665726 hasPublicationYear "2022" @default.
- W4220665726 type Work @default.
- W4220665726 citedByCount "0" @default.
- W4220665726 crossrefType "journal-article" @default.
- W4220665726 hasAuthorship W4220665726A5035340812 @default.
- W4220665726 hasAuthorship W4220665726A5041034837 @default.
- W4220665726 hasBestOaLocation W42206657261 @default.
- W4220665726 hasConcept C104317684 @default.
- W4220665726 hasConcept C107673813 @default.
- W4220665726 hasConcept C119857082 @default.
- W4220665726 hasConcept C124101348 @default.
- W4220665726 hasConcept C127413603 @default.
- W4220665726 hasConcept C150194340 @default.
- W4220665726 hasConcept C154945302 @default.
- W4220665726 hasConcept C155846161 @default.
- W4220665726 hasConcept C191172861 @default.
- W4220665726 hasConcept C201995342 @default.
- W4220665726 hasConcept C2522767166 @default.
- W4220665726 hasConcept C26517878 @default.
- W4220665726 hasConcept C2780451532 @default.
- W4220665726 hasConcept C31258907 @default.
- W4220665726 hasConcept C33724603 @default.
- W4220665726 hasConcept C38652104 @default.
- W4220665726 hasConcept C41008148 @default.
- W4220665726 hasConcept C55493867 @default.
- W4220665726 hasConcept C67339327 @default.
- W4220665726 hasConcept C75684735 @default.
- W4220665726 hasConcept C86803240 @default.
- W4220665726 hasConceptScore W4220665726C104317684 @default.
- W4220665726 hasConceptScore W4220665726C107673813 @default.
- W4220665726 hasConceptScore W4220665726C119857082 @default.
- W4220665726 hasConceptScore W4220665726C124101348 @default.
- W4220665726 hasConceptScore W4220665726C127413603 @default.
- W4220665726 hasConceptScore W4220665726C150194340 @default.
- W4220665726 hasConceptScore W4220665726C154945302 @default.
- W4220665726 hasConceptScore W4220665726C155846161 @default.
- W4220665726 hasConceptScore W4220665726C191172861 @default.
- W4220665726 hasConceptScore W4220665726C201995342 @default.
- W4220665726 hasConceptScore W4220665726C2522767166 @default.
- W4220665726 hasConceptScore W4220665726C26517878 @default.
- W4220665726 hasConceptScore W4220665726C2780451532 @default.
- W4220665726 hasConceptScore W4220665726C31258907 @default.
- W4220665726 hasConceptScore W4220665726C33724603 @default.
- W4220665726 hasConceptScore W4220665726C38652104 @default.
- W4220665726 hasConceptScore W4220665726C41008148 @default.
- W4220665726 hasConceptScore W4220665726C55493867 @default.
- W4220665726 hasConceptScore W4220665726C67339327 @default.
- W4220665726 hasConceptScore W4220665726C75684735 @default.
- W4220665726 hasConceptScore W4220665726C86803240 @default.
- W4220665726 hasIssue "3" @default.
- W4220665726 hasLocation W42206657261 @default.
- W4220665726 hasOpenAccess W4220665726 @default.
- W4220665726 hasPrimaryLocation W42206657261 @default.
- W4220665726 hasRelatedWork W1608894329 @default.
- W4220665726 hasRelatedWork W1983676063 @default.
- W4220665726 hasRelatedWork W2155263871 @default.
- W4220665726 hasRelatedWork W2295404609 @default.
- W4220665726 hasRelatedWork W2608950002 @default.
- W4220665726 hasRelatedWork W2753776232 @default.
- W4220665726 hasRelatedWork W3014300295 @default.
- W4220665726 hasRelatedWork W4220665726 @default.
- W4220665726 hasRelatedWork W4385957992 @default.
- W4220665726 hasRelatedWork W63973286 @default.
- W4220665726 hasVolume "65" @default.
- W4220665726 isParatext "false" @default.
- W4220665726 isRetracted "false" @default.
- W4220665726 workType "article" @default.