Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220666015> ?p ?o ?g. }
- W4220666015 endingPage "119136" @default.
- W4220666015 startingPage "119136" @default.
- W4220666015 abstract "Water quality forecasting can provide useful information for public health protection and support water resources management. In order to forecast water quality more accurately, this paper proposes a novel hybrid model by combining data decomposition, fuzzy C-means clustering and bidirectional gated recurrent unit. Firstly, the original water quality data is decomposed into several subseries by empirical wavelet transform, and then, the decomposed subseries are recombined by fuzzy C-means clustering. Next, for each clustered series, bidirectional gated recurrent unit is applied to develop prediction model. Finally, the forecast result is obtained by the summation of the predictions for the subseries. The proposed forecast model is evaluated by the water quality data of Poyang Lake, China. Results show that the proposed forecast model provides highly accurate forecast result for all of the six water quality data: the average of MAPE of the forecast results for the six water quality datasets is 4.59% for 7 day ahead prediction. Furthermore, our model shows better forecast performance than the other models. Particularly, compared with the single BiGRU model, MAPE decreased by 32.86% in average. Results demonstrate that the proposed forecast model can be used effectively for water quality forecasting." @default.
- W4220666015 created "2022-04-03" @default.
- W4220666015 creator A5003735477 @default.
- W4220666015 creator A5019326933 @default.
- W4220666015 creator A5033436807 @default.
- W4220666015 creator A5063959800 @default.
- W4220666015 creator A5070910952 @default.
- W4220666015 creator A5079738340 @default.
- W4220666015 date "2022-06-01" @default.
- W4220666015 modified "2023-10-17" @default.
- W4220666015 title "Water quality forecasting based on data decomposition, fuzzy clustering and deep learning neural network" @default.
- W4220666015 cites W1867513930 @default.
- W4220666015 cites W1987619549 @default.
- W4220666015 cites W2019900743 @default.
- W4220666015 cites W2054441052 @default.
- W4220666015 cites W2286333062 @default.
- W4220666015 cites W2416703412 @default.
- W4220666015 cites W2484979138 @default.
- W4220666015 cites W2545991099 @default.
- W4220666015 cites W2548501426 @default.
- W4220666015 cites W2743741828 @default.
- W4220666015 cites W2766910929 @default.
- W4220666015 cites W2811057976 @default.
- W4220666015 cites W2885097378 @default.
- W4220666015 cites W2892675915 @default.
- W4220666015 cites W2901944617 @default.
- W4220666015 cites W2904896091 @default.
- W4220666015 cites W2915610012 @default.
- W4220666015 cites W2943544609 @default.
- W4220666015 cites W2945207508 @default.
- W4220666015 cites W2946446522 @default.
- W4220666015 cites W2950214180 @default.
- W4220666015 cites W2989940830 @default.
- W4220666015 cites W2991423538 @default.
- W4220666015 cites W2998062104 @default.
- W4220666015 cites W2998567725 @default.
- W4220666015 cites W3001710857 @default.
- W4220666015 cites W3005619874 @default.
- W4220666015 cites W3005915581 @default.
- W4220666015 cites W3006101764 @default.
- W4220666015 cites W3016237013 @default.
- W4220666015 cites W3020582323 @default.
- W4220666015 cites W3021429973 @default.
- W4220666015 cites W3021915717 @default.
- W4220666015 cites W3027646416 @default.
- W4220666015 cites W3030628169 @default.
- W4220666015 cites W3035348935 @default.
- W4220666015 cites W3037610215 @default.
- W4220666015 cites W3039274877 @default.
- W4220666015 cites W3046986867 @default.
- W4220666015 cites W3047335959 @default.
- W4220666015 cites W3080150692 @default.
- W4220666015 cites W3109232406 @default.
- W4220666015 cites W3112106833 @default.
- W4220666015 cites W3113873473 @default.
- W4220666015 cites W3121748943 @default.
- W4220666015 cites W3127287178 @default.
- W4220666015 cites W3127409731 @default.
- W4220666015 cites W3127505066 @default.
- W4220666015 cites W3128444610 @default.
- W4220666015 cites W3149057642 @default.
- W4220666015 cites W3157049398 @default.
- W4220666015 cites W3160428676 @default.
- W4220666015 cites W3161764053 @default.
- W4220666015 cites W3168992430 @default.
- W4220666015 cites W3172157095 @default.
- W4220666015 cites W3176342080 @default.
- W4220666015 cites W3194960351 @default.
- W4220666015 cites W3213146548 @default.
- W4220666015 doi "https://doi.org/10.1016/j.envpol.2022.119136" @default.
- W4220666015 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35283198" @default.
- W4220666015 hasPublicationYear "2022" @default.
- W4220666015 type Work @default.
- W4220666015 citedByCount "24" @default.
- W4220666015 countsByYear W42206660152022 @default.
- W4220666015 countsByYear W42206660152023 @default.
- W4220666015 crossrefType "journal-article" @default.
- W4220666015 hasAuthorship W4220666015A5003735477 @default.
- W4220666015 hasAuthorship W4220666015A5019326933 @default.
- W4220666015 hasAuthorship W4220666015A5033436807 @default.
- W4220666015 hasAuthorship W4220666015A5063959800 @default.
- W4220666015 hasAuthorship W4220666015A5070910952 @default.
- W4220666015 hasAuthorship W4220666015A5079738340 @default.
- W4220666015 hasConcept C119857082 @default.
- W4220666015 hasConcept C124101348 @default.
- W4220666015 hasConcept C151406439 @default.
- W4220666015 hasConcept C154945302 @default.
- W4220666015 hasConcept C18903297 @default.
- W4220666015 hasConcept C2780797713 @default.
- W4220666015 hasConcept C41008148 @default.
- W4220666015 hasConcept C50644808 @default.
- W4220666015 hasConcept C58166 @default.
- W4220666015 hasConcept C73555534 @default.
- W4220666015 hasConcept C86803240 @default.
- W4220666015 hasConceptScore W4220666015C119857082 @default.
- W4220666015 hasConceptScore W4220666015C124101348 @default.
- W4220666015 hasConceptScore W4220666015C151406439 @default.
- W4220666015 hasConceptScore W4220666015C154945302 @default.