Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220666351> ?p ?o ?g. }
- W4220666351 endingPage "1303" @default.
- W4220666351 startingPage "1273" @default.
- W4220666351 abstract "Abstract Sovereign credit ratings summarize the creditworthiness of countries. These ratings have a large influence on the economy and the yields at which governments can issue new debt. This paper investigates the use of a multilayer perceptron (MLP), classification and regression trees (CART), support vector machines (SVM), Naïve Bayes (NB), and an ordered logit (OL) model for the prediction of sovereign credit ratings. We show that MLP is best suited for predicting sovereign credit ratings, with a random cross-validated accuracy of 68%, followed by CART (59%), SVM (41%), NB (38%), and OL (33%). Investigation of the determining factors shows that there is some heterogeneity in the important variables across the models. However, the two models with the highest out-of-sample predictive accuracy, MLP and CART, show a lot of similarities in the influential variables, with regulatory quality, and GDP per capita as common important variables. Consistent with economic theory, a higher regulatory quality and/or GDP per capita are associated with a higher credit rating." @default.
- W4220666351 created "2022-04-03" @default.
- W4220666351 creator A5014075387 @default.
- W4220666351 creator A5025258377 @default.
- W4220666351 date "2022-03-25" @default.
- W4220666351 modified "2023-09-30" @default.
- W4220666351 title "Modelling Sovereign Credit Ratings: Evaluating the Accuracy and Driving Factors using Machine Learning Techniques" @default.
- W4220666351 cites W1499573490 @default.
- W4220666351 cites W1982120517 @default.
- W4220666351 cites W1983506753 @default.
- W4220666351 cites W2019451007 @default.
- W4220666351 cites W2041139478 @default.
- W4220666351 cites W2093886500 @default.
- W4220666351 cites W2096352448 @default.
- W4220666351 cites W2098591883 @default.
- W4220666351 cites W2108537633 @default.
- W4220666351 cites W2109461360 @default.
- W4220666351 cites W2131816657 @default.
- W4220666351 cites W2254445784 @default.
- W4220666351 cites W2278958816 @default.
- W4220666351 cites W2321278764 @default.
- W4220666351 cites W2343709050 @default.
- W4220666351 cites W2579061498 @default.
- W4220666351 cites W2604829436 @default.
- W4220666351 cites W2787894218 @default.
- W4220666351 cites W2964078627 @default.
- W4220666351 cites W3121147945 @default.
- W4220666351 cites W3121484394 @default.
- W4220666351 cites W3121632078 @default.
- W4220666351 doi "https://doi.org/10.1007/s10614-022-10245-7" @default.
- W4220666351 hasPublicationYear "2022" @default.
- W4220666351 type Work @default.
- W4220666351 citedByCount "4" @default.
- W4220666351 countsByYear W42206663512022 @default.
- W4220666351 countsByYear W42206663512023 @default.
- W4220666351 crossrefType "journal-article" @default.
- W4220666351 hasAuthorship W4220666351A5014075387 @default.
- W4220666351 hasAuthorship W4220666351A5025258377 @default.
- W4220666351 hasBestOaLocation W42206663511 @default.
- W4220666351 hasConcept C119857082 @default.
- W4220666351 hasConcept C12267149 @default.
- W4220666351 hasConcept C127413603 @default.
- W4220666351 hasConcept C127598652 @default.
- W4220666351 hasConcept C144024400 @default.
- W4220666351 hasConcept C149782125 @default.
- W4220666351 hasConcept C149923435 @default.
- W4220666351 hasConcept C151956035 @default.
- W4220666351 hasConcept C154945302 @default.
- W4220666351 hasConcept C162118730 @default.
- W4220666351 hasConcept C162324750 @default.
- W4220666351 hasConcept C178350159 @default.
- W4220666351 hasConcept C179717631 @default.
- W4220666351 hasConcept C205208723 @default.
- W4220666351 hasConcept C2777174672 @default.
- W4220666351 hasConcept C2777275308 @default.
- W4220666351 hasConcept C2908647359 @default.
- W4220666351 hasConcept C30589699 @default.
- W4220666351 hasConcept C41008148 @default.
- W4220666351 hasConcept C50644808 @default.
- W4220666351 hasConcept C52001869 @default.
- W4220666351 hasConcept C70339092 @default.
- W4220666351 hasConcept C78519656 @default.
- W4220666351 hasConceptScore W4220666351C119857082 @default.
- W4220666351 hasConceptScore W4220666351C12267149 @default.
- W4220666351 hasConceptScore W4220666351C127413603 @default.
- W4220666351 hasConceptScore W4220666351C127598652 @default.
- W4220666351 hasConceptScore W4220666351C144024400 @default.
- W4220666351 hasConceptScore W4220666351C149782125 @default.
- W4220666351 hasConceptScore W4220666351C149923435 @default.
- W4220666351 hasConceptScore W4220666351C151956035 @default.
- W4220666351 hasConceptScore W4220666351C154945302 @default.
- W4220666351 hasConceptScore W4220666351C162118730 @default.
- W4220666351 hasConceptScore W4220666351C162324750 @default.
- W4220666351 hasConceptScore W4220666351C178350159 @default.
- W4220666351 hasConceptScore W4220666351C179717631 @default.
- W4220666351 hasConceptScore W4220666351C205208723 @default.
- W4220666351 hasConceptScore W4220666351C2777174672 @default.
- W4220666351 hasConceptScore W4220666351C2777275308 @default.
- W4220666351 hasConceptScore W4220666351C2908647359 @default.
- W4220666351 hasConceptScore W4220666351C30589699 @default.
- W4220666351 hasConceptScore W4220666351C41008148 @default.
- W4220666351 hasConceptScore W4220666351C50644808 @default.
- W4220666351 hasConceptScore W4220666351C52001869 @default.
- W4220666351 hasConceptScore W4220666351C70339092 @default.
- W4220666351 hasConceptScore W4220666351C78519656 @default.
- W4220666351 hasIssue "3" @default.
- W4220666351 hasLocation W42206663511 @default.
- W4220666351 hasLocation W42206663512 @default.
- W4220666351 hasLocation W42206663513 @default.
- W4220666351 hasLocation W42206663514 @default.
- W4220666351 hasOpenAccess W4220666351 @default.
- W4220666351 hasPrimaryLocation W42206663511 @default.
- W4220666351 hasRelatedWork W2018276332 @default.
- W4220666351 hasRelatedWork W2229401229 @default.
- W4220666351 hasRelatedWork W2994751351 @default.
- W4220666351 hasRelatedWork W3124810783 @default.
- W4220666351 hasRelatedWork W3127806196 @default.
- W4220666351 hasRelatedWork W3168994312 @default.