Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220666719> ?p ?o ?g. }
- W4220666719 endingPage "105344" @default.
- W4220666719 startingPage "105344" @default.
- W4220666719 abstract "Many countries in the world have been facing the rapid spread of COVID-19 since February 2020. There is a dire need for efficient and cheap automated diagnosis systems that can reduce the pressure on healthcare systems. Extensive research is being done on the use of image classification for the detection of COVID-19 through X-ray and CT-scan images of patients. Deep learning has been the most popular technique for image classification during the last decade. However, the performance of deep learning-based methods heavily depends on the architecture of the deep neural network. Over the last few years, metaheuristics have gained popularity for optimizing the architecture of deep neural networks. Metaheuristics have been widely used to solve different complex non-linear optimization problems due to their flexibility, simplicity, and problem independence. This paper aims to study the different image classification techniques for chest images, including the applications of metaheuristics for optimization and feature selection of deep learning and machine learning models. The motivation of this study is to focus on applications of different types of metaheuristics for COVID-19 detection and to shed some light on future challenges in COVID-19 detection from medical images. The aim is to inspire researchers to focus their research on overlooked aspects of COVID-19 detection." @default.
- W4220666719 created "2022-04-03" @default.
- W4220666719 creator A5000996281 @default.
- W4220666719 creator A5045011600 @default.
- W4220666719 creator A5063878881 @default.
- W4220666719 date "2022-05-01" @default.
- W4220666719 modified "2023-09-29" @default.
- W4220666719 title "Metaheuristics based COVID-19 detection using medical images: A review" @default.
- W4220666719 cites W2147800946 @default.
- W4220666719 cites W2148495075 @default.
- W4220666719 cites W2784342274 @default.
- W4220666719 cites W2787987596 @default.
- W4220666719 cites W2792689221 @default.
- W4220666719 cites W2807821935 @default.
- W4220666719 cites W2941278538 @default.
- W4220666719 cites W2991568040 @default.
- W4220666719 cites W3003217347 @default.
- W4220666719 cites W3007040893 @default.
- W4220666719 cites W3009268531 @default.
- W4220666719 cites W3010699833 @default.
- W4220666719 cites W3011104345 @default.
- W4220666719 cites W3012087746 @default.
- W4220666719 cites W3013277995 @default.
- W4220666719 cites W3017403618 @default.
- W4220666719 cites W3021541375 @default.
- W4220666719 cites W3039137888 @default.
- W4220666719 cites W3042070269 @default.
- W4220666719 cites W3042239862 @default.
- W4220666719 cites W3043211958 @default.
- W4220666719 cites W3056359467 @default.
- W4220666719 cites W3080833865 @default.
- W4220666719 cites W3087000505 @default.
- W4220666719 cites W3087300877 @default.
- W4220666719 cites W3089460656 @default.
- W4220666719 cites W3090867153 @default.
- W4220666719 cites W3093873961 @default.
- W4220666719 cites W3093903390 @default.
- W4220666719 cites W3097256196 @default.
- W4220666719 cites W3109797341 @default.
- W4220666719 cites W3111798125 @default.
- W4220666719 cites W3115094144 @default.
- W4220666719 cites W3125771089 @default.
- W4220666719 cites W3125950809 @default.
- W4220666719 cites W3126143134 @default.
- W4220666719 cites W3126956414 @default.
- W4220666719 cites W3129440340 @default.
- W4220666719 cites W3132279451 @default.
- W4220666719 cites W3132592582 @default.
- W4220666719 cites W3132995022 @default.
- W4220666719 cites W3134315417 @default.
- W4220666719 cites W3134784106 @default.
- W4220666719 cites W3135079895 @default.
- W4220666719 cites W3136339873 @default.
- W4220666719 cites W3138476267 @default.
- W4220666719 cites W3149452572 @default.
- W4220666719 cites W3155958087 @default.
- W4220666719 cites W3161085879 @default.
- W4220666719 cites W3165808183 @default.
- W4220666719 cites W3173455503 @default.
- W4220666719 cites W3179669524 @default.
- W4220666719 cites W3193730760 @default.
- W4220666719 cites W3194454117 @default.
- W4220666719 cites W3195615736 @default.
- W4220666719 cites W3199767788 @default.
- W4220666719 cites W3203610696 @default.
- W4220666719 doi "https://doi.org/10.1016/j.compbiomed.2022.105344" @default.
- W4220666719 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35294913" @default.
- W4220666719 hasPublicationYear "2022" @default.
- W4220666719 type Work @default.
- W4220666719 citedByCount "11" @default.
- W4220666719 countsByYear W42206667192022 @default.
- W4220666719 countsByYear W42206667192023 @default.
- W4220666719 crossrefType "journal-article" @default.
- W4220666719 hasAuthorship W4220666719A5000996281 @default.
- W4220666719 hasAuthorship W4220666719A5045011600 @default.
- W4220666719 hasAuthorship W4220666719A5063878881 @default.
- W4220666719 hasBestOaLocation W42206667192 @default.
- W4220666719 hasConcept C105795698 @default.
- W4220666719 hasConcept C108583219 @default.
- W4220666719 hasConcept C109718341 @default.
- W4220666719 hasConcept C119857082 @default.
- W4220666719 hasConcept C153180895 @default.
- W4220666719 hasConcept C154945302 @default.
- W4220666719 hasConcept C2780598303 @default.
- W4220666719 hasConcept C33923547 @default.
- W4220666719 hasConcept C41008148 @default.
- W4220666719 hasConcept C50644808 @default.
- W4220666719 hasConcept C81363708 @default.
- W4220666719 hasConceptScore W4220666719C105795698 @default.
- W4220666719 hasConceptScore W4220666719C108583219 @default.
- W4220666719 hasConceptScore W4220666719C109718341 @default.
- W4220666719 hasConceptScore W4220666719C119857082 @default.
- W4220666719 hasConceptScore W4220666719C153180895 @default.
- W4220666719 hasConceptScore W4220666719C154945302 @default.
- W4220666719 hasConceptScore W4220666719C2780598303 @default.
- W4220666719 hasConceptScore W4220666719C33923547 @default.
- W4220666719 hasConceptScore W4220666719C41008148 @default.
- W4220666719 hasConceptScore W4220666719C50644808 @default.