Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220668766> ?p ?o ?g. }
- W4220668766 endingPage "130" @default.
- W4220668766 startingPage "109" @default.
- W4220668766 abstract "Sleep staging is the process of acquiring biological signals during sleep and marking them according to the stages of sleep. The procedure is performed by an experienced physician and takes more time. When this process is automated, the processing load will be reduced and the time required to identify disease will also be reduced. In this paper, 8 different transform methods for automatic sleep-staging based on convolutional neural networks (CNNs) were compared to classify sleep stages using single-channel electroencephalogram (EEG) signals. Five different labels were used to stage the sleep. These are Wake (W), Non Rapid Eye Movement (NonREM)-1 (N1), NonREM-2 (N2), NonREM-3 (N3), and REM (R). The classifications were done end-to-end without any hand-crafted features, ie without requiring any feature engineering. Time-Frequency components obtained by Short Time Fourier Transform, Discrete Wavelet Transform, Discrete Cosine Transform, Hilbert-Huang Transform, Discrete Gabor Transform, Fast Walsh-Hadamard Transform, Choi-Williams Distribution, and Wigner-Willie Distribution were classified with a supervised deep convolutional neural network to perform sleep staging. The discrete Cosine Transform-CNN method (DCT-CNN) showed the highest performance among the methods suggested in this paper with an F1 score of 89% and a value of 0.86 kappa. The findings of this study revealed that the transformation techniques utilized for the most accurate representation of input data are far superior to traditional approaches based on manual feature extraction, which acquires time, frequency, or nonlinear characteristics. The results of this article are expected to be useful to researchers in the development of low-cost, and easily portable devices." @default.
- W4220668766 created "2022-04-03" @default.
- W4220668766 creator A5036834588 @default.
- W4220668766 creator A5076596840 @default.
- W4220668766 date "2022-03-28" @default.
- W4220668766 modified "2023-10-16" @default.
- W4220668766 title "Comparison of Time-Frequency Analyzes for a Sleep Staging Application with CNN" @default.
- W4220668766 cites W1545241942 @default.
- W4220668766 cites W1930627803 @default.
- W4220668766 cites W1964701252 @default.
- W4220668766 cites W1974498657 @default.
- W4220668766 cites W1975879668 @default.
- W4220668766 cites W1980230025 @default.
- W4220668766 cites W1996768358 @default.
- W4220668766 cites W2007221293 @default.
- W4220668766 cites W2015906010 @default.
- W4220668766 cites W2017689092 @default.
- W4220668766 cites W2031614119 @default.
- W4220668766 cites W2033570251 @default.
- W4220668766 cites W2040575430 @default.
- W4220668766 cites W2048508162 @default.
- W4220668766 cites W2053154970 @default.
- W4220668766 cites W2053303216 @default.
- W4220668766 cites W2061276287 @default.
- W4220668766 cites W2067413899 @default.
- W4220668766 cites W2083048717 @default.
- W4220668766 cites W2101709445 @default.
- W4220668766 cites W2115431794 @default.
- W4220668766 cites W2131030840 @default.
- W4220668766 cites W2132984323 @default.
- W4220668766 cites W2139496586 @default.
- W4220668766 cites W2144395099 @default.
- W4220668766 cites W2150391795 @default.
- W4220668766 cites W2152584768 @default.
- W4220668766 cites W2162800060 @default.
- W4220668766 cites W2163462953 @default.
- W4220668766 cites W2164777277 @default.
- W4220668766 cites W2164805905 @default.
- W4220668766 cites W2165277324 @default.
- W4220668766 cites W2165898317 @default.
- W4220668766 cites W2171782446 @default.
- W4220668766 cites W2482168716 @default.
- W4220668766 cites W2483249389 @default.
- W4220668766 cites W2514257442 @default.
- W4220668766 cites W2542065864 @default.
- W4220668766 cites W2560384232 @default.
- W4220668766 cites W2593999683 @default.
- W4220668766 cites W2604096629 @default.
- W4220668766 cites W2769253450 @default.
- W4220668766 cites W2790486743 @default.
- W4220668766 cites W2805033630 @default.
- W4220668766 cites W2807207632 @default.
- W4220668766 cites W2898642424 @default.
- W4220668766 cites W2908603469 @default.
- W4220668766 cites W2941141441 @default.
- W4220668766 cites W2963919481 @default.
- W4220668766 cites W2990033434 @default.
- W4220668766 cites W2994627998 @default.
- W4220668766 cites W3021386383 @default.
- W4220668766 cites W3035077681 @default.
- W4220668766 cites W3040939498 @default.
- W4220668766 cites W3089612064 @default.
- W4220668766 cites W3133617246 @default.
- W4220668766 cites W3154211693 @default.
- W4220668766 cites W3155352625 @default.
- W4220668766 cites W3156386642 @default.
- W4220668766 cites W35150762 @default.
- W4220668766 doi "https://doi.org/10.4028/p-2j5c10" @default.
- W4220668766 hasPublicationYear "2022" @default.
- W4220668766 type Work @default.
- W4220668766 citedByCount "0" @default.
- W4220668766 crossrefType "journal-article" @default.
- W4220668766 hasAuthorship W4220668766A5036834588 @default.
- W4220668766 hasAuthorship W4220668766A5076596840 @default.
- W4220668766 hasConcept C102519508 @default.
- W4220668766 hasConcept C106131492 @default.
- W4220668766 hasConcept C115961682 @default.
- W4220668766 hasConcept C134306372 @default.
- W4220668766 hasConcept C142433447 @default.
- W4220668766 hasConcept C153180895 @default.
- W4220668766 hasConcept C154945302 @default.
- W4220668766 hasConcept C166386157 @default.
- W4220668766 hasConcept C173149727 @default.
- W4220668766 hasConcept C203024314 @default.
- W4220668766 hasConcept C2221639 @default.
- W4220668766 hasConcept C28490314 @default.
- W4220668766 hasConcept C28799612 @default.
- W4220668766 hasConcept C31972630 @default.
- W4220668766 hasConcept C33923547 @default.
- W4220668766 hasConcept C41008148 @default.
- W4220668766 hasConcept C57733114 @default.
- W4220668766 hasConcept C81363708 @default.
- W4220668766 hasConceptScore W4220668766C102519508 @default.
- W4220668766 hasConceptScore W4220668766C106131492 @default.
- W4220668766 hasConceptScore W4220668766C115961682 @default.
- W4220668766 hasConceptScore W4220668766C134306372 @default.
- W4220668766 hasConceptScore W4220668766C142433447 @default.
- W4220668766 hasConceptScore W4220668766C153180895 @default.