Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220669265> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4220669265 endingPage "4161" @default.
- W4220669265 startingPage "4145" @default.
- W4220669265 abstract "Abstract Precise prediction on vacant parking space (VPS) information plays a vital role in intelligent transportation systems for it helps drivers to find the parking space quickly to reduce unnecessary waste of time and excessive environmental pollution. By analyzing the historical zone-wise VPS data, we find that for the number of VPSs, there is not only a solid temporal correlation within each parking lot, but also an obvious spatial correlation among different parking lots. Given this, this paper proposes a hybrid deep learning framework, known as the dConvLSTM-DCN (dual Convolutional Long Short-Term Memory with Dense Convolutional Network), to make short-term (within 30 min) and long-term (over 30 min) predictions on the VPS availability zone-wisely. Specifically, the temporal correlations of different time scales, namely the 5-min and daily-wise temporal correlations of each parking lot, and the spatial correlations among different parking lots can be effectively captured by the two parallel ConvLSTM components, and meanwhile, the dense convolutional network is leveraged to further improve the propagation and reuse of features in the prediction process. Besides, a two-layer linear network is used to extract the meta-info features to promote the prediction accuracy. For long-term predictions, two methods, namely the direct and iterative prediction methods, are developed. The performance of the prediction model is extensively evaluated with practical data collected from nine public parking lots in Santa Monica. The results show that the dConvLSTM-DCN framework can achieve considerably high accuracy in both short-term and long-term predictions." @default.
- W4220669265 created "2022-04-03" @default.
- W4220669265 creator A5008103777 @default.
- W4220669265 creator A5047527610 @default.
- W4220669265 creator A5055294491 @default.
- W4220669265 creator A5063096622 @default.
- W4220669265 creator A5072517057 @default.
- W4220669265 date "2022-03-18" @default.
- W4220669265 modified "2023-10-05" @default.
- W4220669265 title "Predicting vacant parking space availability zone-wisely: a hybrid deep learning approach" @default.
- W4220669265 cites W1508065755 @default.
- W4220669265 cites W1582119448 @default.
- W4220669265 cites W1615615219 @default.
- W4220669265 cites W2028489066 @default.
- W4220669265 cites W2043074941 @default.
- W4220669265 cites W2064675550 @default.
- W4220669265 cites W2091453093 @default.
- W4220669265 cites W2152412884 @default.
- W4220669265 cites W2540276407 @default.
- W4220669265 cites W2545300838 @default.
- W4220669265 cites W2799831917 @default.
- W4220669265 cites W2809334854 @default.
- W4220669265 cites W2889294691 @default.
- W4220669265 cites W2891809631 @default.
- W4220669265 cites W2903667072 @default.
- W4220669265 cites W2963446712 @default.
- W4220669265 cites W3011451801 @default.
- W4220669265 cites W3023520985 @default.
- W4220669265 cites W3091636705 @default.
- W4220669265 cites W3127209553 @default.
- W4220669265 cites W4210953972 @default.
- W4220669265 doi "https://doi.org/10.1007/s40747-022-00700-1" @default.
- W4220669265 hasPublicationYear "2022" @default.
- W4220669265 type Work @default.
- W4220669265 citedByCount "6" @default.
- W4220669265 countsByYear W42206692652022 @default.
- W4220669265 countsByYear W42206692652023 @default.
- W4220669265 crossrefType "journal-article" @default.
- W4220669265 hasAuthorship W4220669265A5008103777 @default.
- W4220669265 hasAuthorship W4220669265A5047527610 @default.
- W4220669265 hasAuthorship W4220669265A5055294491 @default.
- W4220669265 hasAuthorship W4220669265A5063096622 @default.
- W4220669265 hasAuthorship W4220669265A5072517057 @default.
- W4220669265 hasBestOaLocation W42206692651 @default.
- W4220669265 hasConcept C108583219 @default.
- W4220669265 hasConcept C111919701 @default.
- W4220669265 hasConcept C119857082 @default.
- W4220669265 hasConcept C121332964 @default.
- W4220669265 hasConcept C124101348 @default.
- W4220669265 hasConcept C127413603 @default.
- W4220669265 hasConcept C139502532 @default.
- W4220669265 hasConcept C154945302 @default.
- W4220669265 hasConcept C206588197 @default.
- W4220669265 hasConcept C41008148 @default.
- W4220669265 hasConcept C548081761 @default.
- W4220669265 hasConcept C61797465 @default.
- W4220669265 hasConcept C62520636 @default.
- W4220669265 hasConcept C81363708 @default.
- W4220669265 hasConcept C98045186 @default.
- W4220669265 hasConceptScore W4220669265C108583219 @default.
- W4220669265 hasConceptScore W4220669265C111919701 @default.
- W4220669265 hasConceptScore W4220669265C119857082 @default.
- W4220669265 hasConceptScore W4220669265C121332964 @default.
- W4220669265 hasConceptScore W4220669265C124101348 @default.
- W4220669265 hasConceptScore W4220669265C127413603 @default.
- W4220669265 hasConceptScore W4220669265C139502532 @default.
- W4220669265 hasConceptScore W4220669265C154945302 @default.
- W4220669265 hasConceptScore W4220669265C206588197 @default.
- W4220669265 hasConceptScore W4220669265C41008148 @default.
- W4220669265 hasConceptScore W4220669265C548081761 @default.
- W4220669265 hasConceptScore W4220669265C61797465 @default.
- W4220669265 hasConceptScore W4220669265C62520636 @default.
- W4220669265 hasConceptScore W4220669265C81363708 @default.
- W4220669265 hasConceptScore W4220669265C98045186 @default.
- W4220669265 hasFunder F4320338464 @default.
- W4220669265 hasIssue "5" @default.
- W4220669265 hasLocation W42206692651 @default.
- W4220669265 hasOpenAccess W4220669265 @default.
- W4220669265 hasPrimaryLocation W42206692651 @default.
- W4220669265 hasRelatedWork W2731899572 @default.
- W4220669265 hasRelatedWork W2999805992 @default.
- W4220669265 hasRelatedWork W3116150086 @default.
- W4220669265 hasRelatedWork W3133861977 @default.
- W4220669265 hasRelatedWork W4200173597 @default.
- W4220669265 hasRelatedWork W4223943233 @default.
- W4220669265 hasRelatedWork W4291897433 @default.
- W4220669265 hasRelatedWork W4312417841 @default.
- W4220669265 hasRelatedWork W4321369474 @default.
- W4220669265 hasRelatedWork W4380075502 @default.
- W4220669265 hasVolume "8" @default.
- W4220669265 isParatext "false" @default.
- W4220669265 isRetracted "false" @default.
- W4220669265 workType "article" @default.