Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220670414> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4220670414 endingPage "29" @default.
- W4220670414 startingPage "1" @default.
- W4220670414 abstract "By establishing a connection between a quantile regression and an asymmetric Laplace distribution (ALD), this paper considers the maximum likelihood estimation of parameters of a quantile autoregression model with Markovian switching (MSQAR), where the error terms obey ALD whose scale parameter depends on regime shifts. By utilizing the mixture representation of ALD, we develop an effective ML approach for estimating parameters of MSQAR models, and obtain closed-form estimators of unknown parameters via the EM algorithm. Consistency and asymptotic normality of estimators are shown by extending some techniques adopted in Douc, Moulines, and Rydén (2004). Also, we extend some asymptotic results of estimators to the case where the conditional quantile regression model is misspecified. Furthermore, the proposed approach is illustrated by simulations and empirical data. Simulation results show that the procedure performs well in finite samples, and the empirical analysis not only supports the existence of regime-switching in the quantile autoregression model, but also has a good performance on data fitting." @default.
- W4220670414 created "2022-04-03" @default.
- W4220670414 creator A5056102926 @default.
- W4220670414 creator A5072086520 @default.
- W4220670414 date "2022-03-18" @default.
- W4220670414 modified "2023-09-27" @default.
- W4220670414 title "Maximum likelihood estimation for quantile autoregression models with Markovian switching" @default.
- W4220670414 cites W1968668741 @default.
- W4220670414 cites W1998073888 @default.
- W4220670414 cites W2014378975 @default.
- W4220670414 cites W2020011929 @default.
- W4220670414 cites W2027447060 @default.
- W4220670414 cites W2029367447 @default.
- W4220670414 cites W2037248439 @default.
- W4220670414 cites W2039628045 @default.
- W4220670414 cites W2043436310 @default.
- W4220670414 cites W2059416780 @default.
- W4220670414 cites W2073259699 @default.
- W4220670414 cites W2074812030 @default.
- W4220670414 cites W2075583391 @default.
- W4220670414 cites W2084871407 @default.
- W4220670414 cites W2086546462 @default.
- W4220670414 cites W2096904991 @default.
- W4220670414 cites W2118711140 @default.
- W4220670414 cites W2131374304 @default.
- W4220670414 cites W2150977708 @default.
- W4220670414 cites W2235593455 @default.
- W4220670414 cites W2463070975 @default.
- W4220670414 cites W2537970817 @default.
- W4220670414 cites W279529119 @default.
- W4220670414 cites W2900153862 @default.
- W4220670414 cites W2955223962 @default.
- W4220670414 cites W3010457580 @default.
- W4220670414 cites W3102710946 @default.
- W4220670414 cites W3121709681 @default.
- W4220670414 cites W3124725455 @default.
- W4220670414 cites W3125092920 @default.
- W4220670414 cites W3125161991 @default.
- W4220670414 cites W4241653265 @default.
- W4220670414 cites W4246784033 @default.
- W4220670414 cites W4251244897 @default.
- W4220670414 cites W4252418167 @default.
- W4220670414 cites W4255308044 @default.
- W4220670414 doi "https://doi.org/10.1080/03610926.2022.2051052" @default.
- W4220670414 hasPublicationYear "2022" @default.
- W4220670414 type Work @default.
- W4220670414 citedByCount "0" @default.
- W4220670414 crossrefType "journal-article" @default.
- W4220670414 hasAuthorship W4220670414A5056102926 @default.
- W4220670414 hasAuthorship W4220670414A5072086520 @default.
- W4220670414 hasConcept C105795698 @default.
- W4220670414 hasConcept C118671147 @default.
- W4220670414 hasConcept C149782125 @default.
- W4220670414 hasConcept C159877910 @default.
- W4220670414 hasConcept C185429906 @default.
- W4220670414 hasConcept C28826006 @default.
- W4220670414 hasConcept C33923547 @default.
- W4220670414 hasConcept C63817138 @default.
- W4220670414 hasConcept C65778772 @default.
- W4220670414 hasConceptScore W4220670414C105795698 @default.
- W4220670414 hasConceptScore W4220670414C118671147 @default.
- W4220670414 hasConceptScore W4220670414C149782125 @default.
- W4220670414 hasConceptScore W4220670414C159877910 @default.
- W4220670414 hasConceptScore W4220670414C185429906 @default.
- W4220670414 hasConceptScore W4220670414C28826006 @default.
- W4220670414 hasConceptScore W4220670414C33923547 @default.
- W4220670414 hasConceptScore W4220670414C63817138 @default.
- W4220670414 hasConceptScore W4220670414C65778772 @default.
- W4220670414 hasFunder F4320321001 @default.
- W4220670414 hasLocation W42206704141 @default.
- W4220670414 hasOpenAccess W4220670414 @default.
- W4220670414 hasPrimaryLocation W42206704141 @default.
- W4220670414 hasRelatedWork W2156628102 @default.
- W4220670414 hasRelatedWork W2922392237 @default.
- W4220670414 hasRelatedWork W3022625442 @default.
- W4220670414 hasRelatedWork W3123305356 @default.
- W4220670414 hasRelatedWork W3123651201 @default.
- W4220670414 hasRelatedWork W3124791134 @default.
- W4220670414 hasRelatedWork W3135104130 @default.
- W4220670414 hasRelatedWork W4200167157 @default.
- W4220670414 hasRelatedWork W4287627645 @default.
- W4220670414 hasRelatedWork W4293168461 @default.
- W4220670414 isParatext "false" @default.
- W4220670414 isRetracted "false" @default.
- W4220670414 workType "article" @default.