Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220672120> ?p ?o ?g. }
- W4220672120 endingPage "104620" @default.
- W4220672120 startingPage "104620" @default.
- W4220672120 abstract "A convolutional neural networks (CNN) model for predicting size of buried objects from ground penetrating radar (GPR) B-Scans is proposed. As a pre-processing step, Sobel, Laplacian, Scharr, and Canny operators are used for edge detection of the hyperbolic features. The proposed CNN architecture extracts high level signatures in the initial stages of the model and learns additional low-level features when the input data passes through the neural network to finally make an estimation of the required parameter. Artificially generated GPR B-Scans are used to train the model. The proposed method demonstrates good performance in predicting buried object size. Upon comparison, Scharr operator followed by a deep CNN model showed the best performance, having the minimum mean absolute percentage error of 6.74 when tested on new, unseen data." @default.
- W4220672120 created "2022-04-03" @default.
- W4220672120 creator A5027268826 @default.
- W4220672120 creator A5067985039 @default.
- W4220672120 creator A5088733676 @default.
- W4220672120 date "2022-05-01" @default.
- W4220672120 modified "2023-10-16" @default.
- W4220672120 title "A CNN model for predicting size of buried objects from GPR B-Scans" @default.
- W4220672120 cites W1485843859 @default.
- W4220672120 cites W1897266907 @default.
- W4220672120 cites W1988218346 @default.
- W4220672120 cites W1991294114 @default.
- W4220672120 cites W1996107076 @default.
- W4220672120 cites W1999819488 @default.
- W4220672120 cites W2004727024 @default.
- W4220672120 cites W2035752142 @default.
- W4220672120 cites W2062218586 @default.
- W4220672120 cites W2065289708 @default.
- W4220672120 cites W2066153944 @default.
- W4220672120 cites W2073046487 @default.
- W4220672120 cites W2077655268 @default.
- W4220672120 cites W2082171961 @default.
- W4220672120 cites W2093303892 @default.
- W4220672120 cites W2111569829 @default.
- W4220672120 cites W2118023920 @default.
- W4220672120 cites W2123665156 @default.
- W4220672120 cites W2128880484 @default.
- W4220672120 cites W2130976145 @default.
- W4220672120 cites W2151786856 @default.
- W4220672120 cites W2177880834 @default.
- W4220672120 cites W2265861462 @default.
- W4220672120 cites W2296297488 @default.
- W4220672120 cites W2401477020 @default.
- W4220672120 cites W2410591237 @default.
- W4220672120 cites W2518909974 @default.
- W4220672120 cites W2520959394 @default.
- W4220672120 cites W2521901407 @default.
- W4220672120 cites W2593860915 @default.
- W4220672120 cites W2616014673 @default.
- W4220672120 cites W2626612498 @default.
- W4220672120 cites W2794163378 @default.
- W4220672120 cites W2800145105 @default.
- W4220672120 cites W2889035772 @default.
- W4220672120 cites W2901206390 @default.
- W4220672120 cites W2908837560 @default.
- W4220672120 cites W2933974480 @default.
- W4220672120 cites W2935524202 @default.
- W4220672120 cites W2989979564 @default.
- W4220672120 cites W3012140695 @default.
- W4220672120 cites W3013761254 @default.
- W4220672120 cites W3030068901 @default.
- W4220672120 cites W3034147267 @default.
- W4220672120 doi "https://doi.org/10.1016/j.jappgeo.2022.104620" @default.
- W4220672120 hasPublicationYear "2022" @default.
- W4220672120 type Work @default.
- W4220672120 citedByCount "9" @default.
- W4220672120 countsByYear W42206721202022 @default.
- W4220672120 countsByYear W42206721202023 @default.
- W4220672120 crossrefType "journal-article" @default.
- W4220672120 hasAuthorship W4220672120A5027268826 @default.
- W4220672120 hasAuthorship W4220672120A5067985039 @default.
- W4220672120 hasAuthorship W4220672120A5088733676 @default.
- W4220672120 hasConcept C104317684 @default.
- W4220672120 hasConcept C115961682 @default.
- W4220672120 hasConcept C127313418 @default.
- W4220672120 hasConcept C153180895 @default.
- W4220672120 hasConcept C154945302 @default.
- W4220672120 hasConcept C158448853 @default.
- W4220672120 hasConcept C162307627 @default.
- W4220672120 hasConcept C17020691 @default.
- W4220672120 hasConcept C185592680 @default.
- W4220672120 hasConcept C193536780 @default.
- W4220672120 hasConcept C30703548 @default.
- W4220672120 hasConcept C41008148 @default.
- W4220672120 hasConcept C50644808 @default.
- W4220672120 hasConcept C554190296 @default.
- W4220672120 hasConcept C55493867 @default.
- W4220672120 hasConcept C71813955 @default.
- W4220672120 hasConcept C76155785 @default.
- W4220672120 hasConcept C81363708 @default.
- W4220672120 hasConcept C86339819 @default.
- W4220672120 hasConcept C9417928 @default.
- W4220672120 hasConceptScore W4220672120C104317684 @default.
- W4220672120 hasConceptScore W4220672120C115961682 @default.
- W4220672120 hasConceptScore W4220672120C127313418 @default.
- W4220672120 hasConceptScore W4220672120C153180895 @default.
- W4220672120 hasConceptScore W4220672120C154945302 @default.
- W4220672120 hasConceptScore W4220672120C158448853 @default.
- W4220672120 hasConceptScore W4220672120C162307627 @default.
- W4220672120 hasConceptScore W4220672120C17020691 @default.
- W4220672120 hasConceptScore W4220672120C185592680 @default.
- W4220672120 hasConceptScore W4220672120C193536780 @default.
- W4220672120 hasConceptScore W4220672120C30703548 @default.
- W4220672120 hasConceptScore W4220672120C41008148 @default.
- W4220672120 hasConceptScore W4220672120C50644808 @default.
- W4220672120 hasConceptScore W4220672120C554190296 @default.
- W4220672120 hasConceptScore W4220672120C55493867 @default.
- W4220672120 hasConceptScore W4220672120C71813955 @default.