Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220674186> ?p ?o ?g. }
Showing items 1 to 46 of
46
with 100 items per page.
- W4220674186 abstract "<p>A key challenge in climate science is to quantify the forced response in impact-relevant variables such as precipitation against the background of internal variability, both in models and observations. Dynamical adjustment techniques aim to remove unforced variability from a target variable by identifying patterns associated with circulation, thus effectively acting as a filter for dynamically induced variability. The forced contributions are interpreted as the variation that is unexplained by circulation. However, dynamical adjustment of precipitation at local scales remains challenging because of large natural variability and the complex, nonlinear relationship between precipitation and circulation particularly in heterogeneous&#160;terrain.&#160;</p><p>In this talk, I will present the Latent Linear Adjustment Autoencoder (LLAAE), a novel statistical model that builds on variational autoencoders. The Latent Linear Adjustment Autoencoder enables estimation of the contribution of a coarse-scale atmospheric circulation proxy to daily precipitation at high resolution and in a spatially coherent manner. To predict circulation-induced precipitation, the LLAAE combines a linear component, which models the relationship between circulation and the latent space of an autoencoder, with the autoencoder's nonlinear decoder. The combination is achieved by imposing an additional penalty in the cost function that encourages linearity between the circulation field and the autoencoder's latent space, hence leveraging robustness advantages of linear models as well as the flexibility of deep neural networks.&#160;</p><p>We show that our model predicts realistic daily winter precipitation fields at high resolution based on a 50-member ensemble of the Canadian Regional Climate Model at 12&#8201;km resolution over Europe, capturing, for instance, key orographic features and geographical gradients. Using the Latent Linear Adjustment Autoencoder to remove the dynamic component of precipitation variability, forced thermodynamic components are expected to remain in the residual, which enables the uncovering of forced precipitation patterns of change from just a few ensemble members. We extend this to quantify the forced pattern of change conditional on specific circulation regimes.&#160;</p><p>Future applications could include, for instance, weather generators emulating climate model simulations of regional precipitation, detection and attribution at subcontinental scales, or statistical downscaling and transfer learning between models and observations to exploit the typically much larger sample size in models compared to observations.</p>" @default.
- W4220674186 created "2022-04-03" @default.
- W4220674186 creator A5015849102 @default.
- W4220674186 creator A5022627115 @default.
- W4220674186 creator A5023325806 @default.
- W4220674186 creator A5042836143 @default.
- W4220674186 creator A5071541590 @default.
- W4220674186 date "2022-03-26" @default.
- W4220674186 modified "2023-09-30" @default.
- W4220674186 title "Latent Linear Adjustment Autoencoder: a novel method for estimating dynamic precipitation at high resolution" @default.
- W4220674186 doi "https://doi.org/10.5194/egusphere-egu22-696" @default.
- W4220674186 hasPublicationYear "2022" @default.
- W4220674186 type Work @default.
- W4220674186 citedByCount "0" @default.
- W4220674186 crossrefType "posted-content" @default.
- W4220674186 hasAuthorship W4220674186A5015849102 @default.
- W4220674186 hasAuthorship W4220674186A5022627115 @default.
- W4220674186 hasAuthorship W4220674186A5023325806 @default.
- W4220674186 hasAuthorship W4220674186A5042836143 @default.
- W4220674186 hasAuthorship W4220674186A5071541590 @default.
- W4220674186 hasConcept C101738243 @default.
- W4220674186 hasConcept C154945302 @default.
- W4220674186 hasConcept C33923547 @default.
- W4220674186 hasConcept C41008148 @default.
- W4220674186 hasConcept C50644808 @default.
- W4220674186 hasConceptScore W4220674186C101738243 @default.
- W4220674186 hasConceptScore W4220674186C154945302 @default.
- W4220674186 hasConceptScore W4220674186C33923547 @default.
- W4220674186 hasConceptScore W4220674186C41008148 @default.
- W4220674186 hasConceptScore W4220674186C50644808 @default.
- W4220674186 hasLocation W42206741861 @default.
- W4220674186 hasOpenAccess W4220674186 @default.
- W4220674186 hasPrimaryLocation W42206741861 @default.
- W4220674186 hasRelatedWork W2283340597 @default.
- W4220674186 hasRelatedWork W2589098947 @default.
- W4220674186 hasRelatedWork W2770848619 @default.
- W4220674186 hasRelatedWork W2905455327 @default.
- W4220674186 hasRelatedWork W2927931735 @default.
- W4220674186 hasRelatedWork W2946739205 @default.
- W4220674186 hasRelatedWork W3048468193 @default.
- W4220674186 hasRelatedWork W3085258535 @default.
- W4220674186 hasRelatedWork W3134637941 @default.
- W4220674186 hasRelatedWork W4368275234 @default.
- W4220674186 isParatext "false" @default.
- W4220674186 isRetracted "false" @default.
- W4220674186 workType "article" @default.