Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220677419> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4220677419 abstract "<p>The European Green Deal emphasizes the importance of healthy soils for our planet and society. In order to monitor soil health, modelling soil organic matter (SOM) in space and over time is necessary to assess changes in the fertility of agricultural soils, combat climate change and maintain ecosystem services. In digital soil mapping, most recent statistical modelling approaches have used time series of remote sensing data, which became available from the early 1980s onwards, together with soil observations to make predictions in space and over time. While this has clear advantages, it does not provide spatially explicit, explanatory information for time periods before the 1980s, even though observations in soil databases are often from beforehand. In this study, we modelled changes in SOM in 3D space over 65 years on a national scale in the Netherlands. We used SOM observations from 345&#160;000 locations from 0 to 2 m depth between 1953 and 2018. The covariates were comprised of proxies of soil forming factors either considered to be static (e.g. relief, parent material) or dynamic over these 65 years. As dynamic covariates, we used indices of digitized historic (1960 &#8211; 1980) and more recent (1986 &#8211; 2018) land use maps. These dynamic covariates were chosen for two reasons. Firstly, land use and land cover change are the main drivers of SOM change over the time period of several decades. This is especially true in the Netherlands, where the anthropogenic influence on soils has been tremendous. Approximately 82 % of the land surface are agricultural, urban or infrastructure areas, while 15 % consists of (managed) peatlands and up to 20 % has been reclaimed from the sea. Secondly, by including carefully mapped historic land use, we were able to take advantage of a longer time series of soil data to make space-time predictions of SOM over a longer time period. Predictions were made using the quantile regression forest (QRF) algorithm, whereby sampling depth and year were included during calibration. SOM predictions were validated in two ways: a) over the 65-year period using a 10-fold cross-validation and b) specifically for 1998 and 2018, where designed-based statistical inference was possible using a probability sample. We computed the mean error (ME), root mean squared error (RMSE), model efficiency coefficient (MEC) as accuracy metrics and the prediction interval coverage probability (PICP) as an evaluation of the prediction uncertainty. Results showed that spatial patterns were realistic and properly reproduced but that prediction of temporal dynamics was more challenging. This research is also of interest for spatio-temporal soil modelling in other regions of the world that have soil data from the early and mid-19<sup>th</sup> century and historical land use and land cover data.</p>" @default.
- W4220677419 created "2022-04-03" @default.
- W4220677419 creator A5011620756 @default.
- W4220677419 creator A5022825522 @default.
- W4220677419 creator A5042263519 @default.
- W4220677419 creator A5087730940 @default.
- W4220677419 date "2022-03-27" @default.
- W4220677419 modified "2023-09-29" @default.
- W4220677419 title "Machine learning in four dimensions for mapping soil organic matter changes between 1953-2018 at 25m resolution in the Netherlands" @default.
- W4220677419 doi "https://doi.org/10.5194/egusphere-egu22-5624" @default.
- W4220677419 hasPublicationYear "2022" @default.
- W4220677419 type Work @default.
- W4220677419 citedByCount "0" @default.
- W4220677419 crossrefType "posted-content" @default.
- W4220677419 hasAuthorship W4220677419A5011620756 @default.
- W4220677419 hasAuthorship W4220677419A5022825522 @default.
- W4220677419 hasAuthorship W4220677419A5042263519 @default.
- W4220677419 hasAuthorship W4220677419A5087730940 @default.
- W4220677419 hasConcept C100970517 @default.
- W4220677419 hasConcept C104471815 @default.
- W4220677419 hasConcept C105795698 @default.
- W4220677419 hasConcept C107826830 @default.
- W4220677419 hasConcept C110872660 @default.
- W4220677419 hasConcept C119043178 @default.
- W4220677419 hasConcept C127313418 @default.
- W4220677419 hasConcept C132651083 @default.
- W4220677419 hasConcept C159390177 @default.
- W4220677419 hasConcept C159750122 @default.
- W4220677419 hasConcept C182124840 @default.
- W4220677419 hasConcept C187320778 @default.
- W4220677419 hasConcept C18903297 @default.
- W4220677419 hasConcept C205649164 @default.
- W4220677419 hasConcept C2778755073 @default.
- W4220677419 hasConcept C2780648208 @default.
- W4220677419 hasConcept C33923547 @default.
- W4220677419 hasConcept C38774213 @default.
- W4220677419 hasConcept C39432304 @default.
- W4220677419 hasConcept C4792198 @default.
- W4220677419 hasConcept C58640448 @default.
- W4220677419 hasConcept C58941895 @default.
- W4220677419 hasConcept C71864017 @default.
- W4220677419 hasConcept C76886044 @default.
- W4220677419 hasConcept C86803240 @default.
- W4220677419 hasConceptScore W4220677419C100970517 @default.
- W4220677419 hasConceptScore W4220677419C104471815 @default.
- W4220677419 hasConceptScore W4220677419C105795698 @default.
- W4220677419 hasConceptScore W4220677419C107826830 @default.
- W4220677419 hasConceptScore W4220677419C110872660 @default.
- W4220677419 hasConceptScore W4220677419C119043178 @default.
- W4220677419 hasConceptScore W4220677419C127313418 @default.
- W4220677419 hasConceptScore W4220677419C132651083 @default.
- W4220677419 hasConceptScore W4220677419C159390177 @default.
- W4220677419 hasConceptScore W4220677419C159750122 @default.
- W4220677419 hasConceptScore W4220677419C182124840 @default.
- W4220677419 hasConceptScore W4220677419C187320778 @default.
- W4220677419 hasConceptScore W4220677419C18903297 @default.
- W4220677419 hasConceptScore W4220677419C205649164 @default.
- W4220677419 hasConceptScore W4220677419C2778755073 @default.
- W4220677419 hasConceptScore W4220677419C2780648208 @default.
- W4220677419 hasConceptScore W4220677419C33923547 @default.
- W4220677419 hasConceptScore W4220677419C38774213 @default.
- W4220677419 hasConceptScore W4220677419C39432304 @default.
- W4220677419 hasConceptScore W4220677419C4792198 @default.
- W4220677419 hasConceptScore W4220677419C58640448 @default.
- W4220677419 hasConceptScore W4220677419C58941895 @default.
- W4220677419 hasConceptScore W4220677419C71864017 @default.
- W4220677419 hasConceptScore W4220677419C76886044 @default.
- W4220677419 hasConceptScore W4220677419C86803240 @default.
- W4220677419 hasLocation W42206774191 @default.
- W4220677419 hasOpenAccess W4220677419 @default.
- W4220677419 hasPrimaryLocation W42206774191 @default.
- W4220677419 hasRelatedWork W2049096505 @default.
- W4220677419 hasRelatedWork W2066359438 @default.
- W4220677419 hasRelatedWork W2924622876 @default.
- W4220677419 hasRelatedWork W2960762434 @default.
- W4220677419 hasRelatedWork W3094319426 @default.
- W4220677419 hasRelatedWork W3216901741 @default.
- W4220677419 hasRelatedWork W4213128977 @default.
- W4220677419 hasRelatedWork W4281638003 @default.
- W4220677419 hasRelatedWork W4311098639 @default.
- W4220677419 hasRelatedWork W4313894662 @default.
- W4220677419 isParatext "false" @default.
- W4220677419 isRetracted "false" @default.
- W4220677419 workType "article" @default.