Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220678114> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4220678114 abstract "Estimating electricity consumption of buildings is an essential task in building energy management to enable decision makers to compare different energy efficiency measures and control strategies. With the growth in available building energy data, many opportunities have been emerged to apply Machine Learning (ML) methods for prediction of building energy performance. The objective of this paper is to (1) analyze and evaluate the influence of different building features on electricity consumption, and (2) evaluate the predictive performance of different ML methods in estimating electricity consumption of buildings with various occupancy types, surface area, locations, and climates. To this end, feature importance assessment is performed using Mutual Information (MI) from information theory. Moreover, four frequently used ML methods, including decision tree, random forest, multilayer perceptron, and gradient boosting are implemented to predict building electricity consumption using the latest version of Commercial Buildings Energy Consumption Survey (CBECS) data. The primary contributions that this research adds to the body of knowledge are (1) the application of information theory to evaluate the influence of different building features on electricity consumption, and (2) the development of new ML models to predict electricity consumption of buildings with different characteristics such as occupancy, surface area, location, and climate. Based on MI analysis square footage, number of employees, cooling equipment type, and principal building activity had the highest influence on building total electricity consumption. Moreover, random forest had the best performance with the coefficient of determination of 0.79 among other ML methods." @default.
- W4220678114 created "2022-04-03" @default.
- W4220678114 creator A5070642377 @default.
- W4220678114 creator A5072236919 @default.
- W4220678114 date "2022-03-07" @default.
- W4220678114 modified "2023-09-28" @default.
- W4220678114 title "Estimating Electricity Consumption of Buildings Using Information Theory and Machine Learning Methods" @default.
- W4220678114 cites W2000164913 @default.
- W4220678114 cites W2094176506 @default.
- W4220678114 cites W2156302255 @default.
- W4220678114 cites W2164709595 @default.
- W4220678114 cites W2274736694 @default.
- W4220678114 cites W2761875693 @default.
- W4220678114 cites W3000090460 @default.
- W4220678114 cites W3157508471 @default.
- W4220678114 doi "https://doi.org/10.1061/9780784483978.045" @default.
- W4220678114 hasPublicationYear "2022" @default.
- W4220678114 type Work @default.
- W4220678114 citedByCount "1" @default.
- W4220678114 countsByYear W42206781142023 @default.
- W4220678114 crossrefType "proceedings-article" @default.
- W4220678114 hasAuthorship W4220678114A5070642377 @default.
- W4220678114 hasAuthorship W4220678114A5072236919 @default.
- W4220678114 hasConcept C119599485 @default.
- W4220678114 hasConcept C119857082 @default.
- W4220678114 hasConcept C127413603 @default.
- W4220678114 hasConcept C134560507 @default.
- W4220678114 hasConcept C144024400 @default.
- W4220678114 hasConcept C160331591 @default.
- W4220678114 hasConcept C162324750 @default.
- W4220678114 hasConcept C169258074 @default.
- W4220678114 hasConcept C170154142 @default.
- W4220678114 hasConcept C206658404 @default.
- W4220678114 hasConcept C2780165032 @default.
- W4220678114 hasConcept C30772137 @default.
- W4220678114 hasConcept C36289849 @default.
- W4220678114 hasConcept C41008148 @default.
- W4220678114 hasConcept C70153297 @default.
- W4220678114 hasConcept C84525736 @default.
- W4220678114 hasConceptScore W4220678114C119599485 @default.
- W4220678114 hasConceptScore W4220678114C119857082 @default.
- W4220678114 hasConceptScore W4220678114C127413603 @default.
- W4220678114 hasConceptScore W4220678114C134560507 @default.
- W4220678114 hasConceptScore W4220678114C144024400 @default.
- W4220678114 hasConceptScore W4220678114C160331591 @default.
- W4220678114 hasConceptScore W4220678114C162324750 @default.
- W4220678114 hasConceptScore W4220678114C169258074 @default.
- W4220678114 hasConceptScore W4220678114C170154142 @default.
- W4220678114 hasConceptScore W4220678114C206658404 @default.
- W4220678114 hasConceptScore W4220678114C2780165032 @default.
- W4220678114 hasConceptScore W4220678114C30772137 @default.
- W4220678114 hasConceptScore W4220678114C36289849 @default.
- W4220678114 hasConceptScore W4220678114C41008148 @default.
- W4220678114 hasConceptScore W4220678114C70153297 @default.
- W4220678114 hasConceptScore W4220678114C84525736 @default.
- W4220678114 hasLocation W42206781141 @default.
- W4220678114 hasOpenAccess W4220678114 @default.
- W4220678114 hasPrimaryLocation W42206781141 @default.
- W4220678114 hasRelatedWork W2073995272 @default.
- W4220678114 hasRelatedWork W2078610765 @default.
- W4220678114 hasRelatedWork W2118105543 @default.
- W4220678114 hasRelatedWork W2560876721 @default.
- W4220678114 hasRelatedWork W2755654451 @default.
- W4220678114 hasRelatedWork W291741798 @default.
- W4220678114 hasRelatedWork W2921931375 @default.
- W4220678114 hasRelatedWork W4200118791 @default.
- W4220678114 hasRelatedWork W4220869870 @default.
- W4220678114 hasRelatedWork W4281789548 @default.
- W4220678114 isParatext "false" @default.
- W4220678114 isRetracted "false" @default.
- W4220678114 workType "article" @default.