Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220679456> ?p ?o ?g. }
- W4220679456 abstract "Longitudinal data analysis can improve our understanding of the influences on health trajectories across the life-course. There are a variety of statistical models which can be used, and their fitting and interpretation can be complex, particularly where there is a nonlinear trajectory. Our aim was to provide an accessible guide along with applied examples to using four sophisticated modelling procedures for describing nonlinear growth trajectories.This expository paper provides an illustrative guide to summarising nonlinear growth trajectories for repeatedly measured continuous outcomes using (i) linear spline and (ii) natural cubic spline linear mixed-effects (LME) models, (iii) Super Imposition by Translation and Rotation (SITAR) nonlinear mixed effects models, and (iv) latent trajectory models. The underlying model for each approach, their similarities and differences, and their advantages and disadvantages are described. Their application and correct interpretation of their results is illustrated by analysing repeated bone mass measures to characterise bone growth patterns and their sex differences in three cohort studies from the UK, USA, and Canada comprising 8500 individuals and 37,000 measurements from ages 5-40 years. Recommendations for choosing a modelling approach are provided along with a discussion and signposting on further modelling extensions for analysing trajectory exposures and outcomes, and multiple cohorts.Linear and natural cubic spline LME models and SITAR provided similar summary of the mean bone growth trajectory and growth velocity, and the sex differences in growth patterns. Growth velocity (in grams/year) peaked during adolescence, and peaked earlier in females than males e.g., mean age at peak bone mineral content accrual from multicohort SITAR models was 12.2 years in females and 13.9 years in males. Latent trajectory models (with trajectory shapes estimated using a natural cubic spline) identified up to four subgroups of individuals with distinct trajectories throughout adolescence.LME models with linear and natural cubic splines, SITAR, and latent trajectory models are useful for describing nonlinear growth trajectories, and these methods can be adapted for other complex traits. Choice of method depends on the research aims, complexity of the trajectory, and available data. Scripts and synthetic datasets are provided for readers to replicate trajectory modelling and visualisation using the R statistical computing software." @default.
- W4220679456 created "2022-04-03" @default.
- W4220679456 creator A5001619907 @default.
- W4220679456 creator A5004881578 @default.
- W4220679456 creator A5009334187 @default.
- W4220679456 creator A5016719744 @default.
- W4220679456 creator A5022945304 @default.
- W4220679456 creator A5028254485 @default.
- W4220679456 creator A5060693430 @default.
- W4220679456 creator A5063576136 @default.
- W4220679456 creator A5069461209 @default.
- W4220679456 creator A5070512705 @default.
- W4220679456 creator A5072066302 @default.
- W4220679456 creator A5086072353 @default.
- W4220679456 date "2022-03-15" @default.
- W4220679456 modified "2023-10-10" @default.
- W4220679456 title "Using linear and natural cubic splines, SITAR, and latent trajectory models to characterise nonlinear longitudinal growth trajectories in cohort studies" @default.
- W4220679456 cites W1603587472 @default.
- W4220679456 cites W1783766214 @default.
- W4220679456 cites W1951724000 @default.
- W4220679456 cites W1970690591 @default.
- W4220679456 cites W1974992958 @default.
- W4220679456 cites W1992057461 @default.
- W4220679456 cites W1998071148 @default.
- W4220679456 cites W2009428399 @default.
- W4220679456 cites W2040077351 @default.
- W4220679456 cites W2046042259 @default.
- W4220679456 cites W2048539086 @default.
- W4220679456 cites W2058841885 @default.
- W4220679456 cites W2069764417 @default.
- W4220679456 cites W2069926335 @default.
- W4220679456 cites W2079875205 @default.
- W4220679456 cites W2082246284 @default.
- W4220679456 cites W2107406434 @default.
- W4220679456 cites W2109989539 @default.
- W4220679456 cites W2123263006 @default.
- W4220679456 cites W2123626639 @default.
- W4220679456 cites W2127211648 @default.
- W4220679456 cites W2129058130 @default.
- W4220679456 cites W2139017261 @default.
- W4220679456 cites W2141623219 @default.
- W4220679456 cites W2143509157 @default.
- W4220679456 cites W2145469515 @default.
- W4220679456 cites W2147254563 @default.
- W4220679456 cites W2150130690 @default.
- W4220679456 cites W2152799248 @default.
- W4220679456 cites W2153238990 @default.
- W4220679456 cites W2162880285 @default.
- W4220679456 cites W2168594544 @default.
- W4220679456 cites W2344236281 @default.
- W4220679456 cites W2418164932 @default.
- W4220679456 cites W2484157392 @default.
- W4220679456 cites W2521844883 @default.
- W4220679456 cites W2544063074 @default.
- W4220679456 cites W2555629321 @default.
- W4220679456 cites W2579779633 @default.
- W4220679456 cites W2584578310 @default.
- W4220679456 cites W2730267944 @default.
- W4220679456 cites W2748780277 @default.
- W4220679456 cites W2766211231 @default.
- W4220679456 cites W2766833066 @default.
- W4220679456 cites W2767855138 @default.
- W4220679456 cites W2794722104 @default.
- W4220679456 cites W2796153381 @default.
- W4220679456 cites W2801189561 @default.
- W4220679456 cites W2805358634 @default.
- W4220679456 cites W2886736785 @default.
- W4220679456 cites W2891381594 @default.
- W4220679456 cites W2894404475 @default.
- W4220679456 cites W2904561288 @default.
- W4220679456 cites W2905148493 @default.
- W4220679456 cites W2913206302 @default.
- W4220679456 cites W2921495327 @default.
- W4220679456 cites W2922315794 @default.
- W4220679456 cites W2924517740 @default.
- W4220679456 cites W2936480486 @default.
- W4220679456 cites W2947802409 @default.
- W4220679456 cites W2949566262 @default.
- W4220679456 cites W2968724963 @default.
- W4220679456 cites W2970547260 @default.
- W4220679456 cites W3000300768 @default.
- W4220679456 cites W3009891155 @default.
- W4220679456 cites W3023238770 @default.
- W4220679456 cites W3039867249 @default.
- W4220679456 cites W3044126122 @default.
- W4220679456 cites W3048591444 @default.
- W4220679456 cites W3093659242 @default.
- W4220679456 cites W3112717819 @default.
- W4220679456 cites W3118862598 @default.
- W4220679456 cites W3124633121 @default.
- W4220679456 cites W3127371185 @default.
- W4220679456 cites W3129002841 @default.
- W4220679456 cites W3130653811 @default.
- W4220679456 cites W3163600545 @default.
- W4220679456 cites W3164317221 @default.
- W4220679456 cites W3175417087 @default.
- W4220679456 cites W4220743257 @default.
- W4220679456 cites W4225473659 @default.
- W4220679456 doi "https://doi.org/10.1186/s12874-022-01542-8" @default.
- W4220679456 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35291947" @default.