Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220681784> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4220681784 abstract "Abstract Motivation With the breakthrough of AlphaFold2, the protein structure prediction problem has made a remarkable progress through end-to-end deep learning techniques, in which correct folds could be built for nearly all single-domain proteins. However, the full-chain modelling appears to be lower on average accuracy than that for the constituent domains and requires higher demand on computing hardware, indicating the performance of full-chain modelling still needs to be improved. In this study, we investigate whether the predicted accuracy of full-chain model can be further improved by domain assembly assisted by deep learning. Results In this article, we developed a structural analogue-based protein structure domain assembly method assisted by deep learning, named SADA. In SADA, a multi-domain protein structure database (MPDB) was constructed for the full-chain analogue detection using individual domain models. Starting from the initial model constructed from the analogue, the domain assembly simulation was performed to generate the full-chain model through a two-stage differential evolution algorithm guided by the physics-based force field and an inter-residue distance potential predicted by deep learning. SADA was compared with the state-of-the-art domain assembly methods on 356 benchmark proteins, and the average TM-score of SADA models is 8.1% and 27.0% higher than that of DEMO and AIDA, respectively. We also assembled full-chain models of 20 human multi-domain proteins using individual domain models independently predicted by AlphaFold2, where the SADA full-chain models obtained a 4.8% higher average TM-score than full-chain models directly predicted by AlphaFold2 and fewer computing resources were required. In addition, we also find that the domains often interact in the similar way in the quaternary orientations if the domains have similar tertiary structures. Furthermore, homologous templates and structural analogues are complementary for multi-domain protein full-chain modelling. Availability The SADA web server are freely available at http://zhanglab-bioinf.com/SADA ." @default.
- W4220681784 created "2022-04-03" @default.
- W4220681784 creator A5007474800 @default.
- W4220681784 creator A5023785113 @default.
- W4220681784 creator A5049735973 @default.
- W4220681784 creator A5061624407 @default.
- W4220681784 creator A5074300225 @default.
- W4220681784 creator A5087388574 @default.
- W4220681784 date "2022-03-08" @default.
- W4220681784 modified "2023-10-14" @default.
- W4220681784 title "Structural analogue-based protein structure domain assembly assisted by deep learning" @default.
- W4220681784 cites W2102245393 @default.
- W4220681784 cites W2108067237 @default.
- W4220681784 cites W2144112190 @default.
- W4220681784 cites W2147805410 @default.
- W4220681784 cites W2151831732 @default.
- W4220681784 cites W2153153865 @default.
- W4220681784 cites W2161151688 @default.
- W4220681784 cites W2170449429 @default.
- W4220681784 cites W2170747616 @default.
- W4220681784 cites W2179537696 @default.
- W4220681784 cites W2557595285 @default.
- W4220681784 cites W2559007573 @default.
- W4220681784 cites W2919831875 @default.
- W4220681784 cites W2949342052 @default.
- W4220681784 cites W2963436022 @default.
- W4220681784 cites W2967606876 @default.
- W4220681784 cites W2997234557 @default.
- W4220681784 cites W3080765519 @default.
- W4220681784 cites W3093046141 @default.
- W4220681784 cites W3171039768 @default.
- W4220681784 cites W3177828909 @default.
- W4220681784 cites W3183475563 @default.
- W4220681784 cites W3183921815 @default.
- W4220681784 cites W3186179742 @default.
- W4220681784 cites W3209492740 @default.
- W4220681784 cites W3212854871 @default.
- W4220681784 cites W4205750539 @default.
- W4220681784 cites W4205827692 @default.
- W4220681784 doi "https://doi.org/10.1101/2022.03.07.483151" @default.
- W4220681784 hasPublicationYear "2022" @default.
- W4220681784 type Work @default.
- W4220681784 citedByCount "2" @default.
- W4220681784 countsByYear W42206817842023 @default.
- W4220681784 crossrefType "posted-content" @default.
- W4220681784 hasAuthorship W4220681784A5007474800 @default.
- W4220681784 hasAuthorship W4220681784A5023785113 @default.
- W4220681784 hasAuthorship W4220681784A5049735973 @default.
- W4220681784 hasAuthorship W4220681784A5061624407 @default.
- W4220681784 hasAuthorship W4220681784A5074300225 @default.
- W4220681784 hasAuthorship W4220681784A5087388574 @default.
- W4220681784 hasBestOaLocation W42206817841 @default.
- W4220681784 hasConcept C108583219 @default.
- W4220681784 hasConcept C13280743 @default.
- W4220681784 hasConcept C134306372 @default.
- W4220681784 hasConcept C154945302 @default.
- W4220681784 hasConcept C18051474 @default.
- W4220681784 hasConcept C185592680 @default.
- W4220681784 hasConcept C185798385 @default.
- W4220681784 hasConcept C205649164 @default.
- W4220681784 hasConcept C33923547 @default.
- W4220681784 hasConcept C36503486 @default.
- W4220681784 hasConcept C41008148 @default.
- W4220681784 hasConcept C47701112 @default.
- W4220681784 hasConcept C55493867 @default.
- W4220681784 hasConceptScore W4220681784C108583219 @default.
- W4220681784 hasConceptScore W4220681784C13280743 @default.
- W4220681784 hasConceptScore W4220681784C134306372 @default.
- W4220681784 hasConceptScore W4220681784C154945302 @default.
- W4220681784 hasConceptScore W4220681784C18051474 @default.
- W4220681784 hasConceptScore W4220681784C185592680 @default.
- W4220681784 hasConceptScore W4220681784C185798385 @default.
- W4220681784 hasConceptScore W4220681784C205649164 @default.
- W4220681784 hasConceptScore W4220681784C33923547 @default.
- W4220681784 hasConceptScore W4220681784C36503486 @default.
- W4220681784 hasConceptScore W4220681784C41008148 @default.
- W4220681784 hasConceptScore W4220681784C47701112 @default.
- W4220681784 hasConceptScore W4220681784C55493867 @default.
- W4220681784 hasLocation W42206817841 @default.
- W4220681784 hasLocation W42206817842 @default.
- W4220681784 hasOpenAccess W4220681784 @default.
- W4220681784 hasPrimaryLocation W42206817841 @default.
- W4220681784 hasRelatedWork W2552517744 @default.
- W4220681784 hasRelatedWork W2900086514 @default.
- W4220681784 hasRelatedWork W3012124201 @default.
- W4220681784 hasRelatedWork W3089700516 @default.
- W4220681784 hasRelatedWork W4220681784 @default.
- W4220681784 hasRelatedWork W4226302535 @default.
- W4220681784 hasRelatedWork W4288040045 @default.
- W4220681784 hasRelatedWork W4291237297 @default.
- W4220681784 hasRelatedWork W4310034804 @default.
- W4220681784 hasRelatedWork W4323049313 @default.
- W4220681784 isParatext "false" @default.
- W4220681784 isRetracted "false" @default.
- W4220681784 workType "article" @default.