Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220682351> ?p ?o ?g. }
- W4220682351 abstract "Exocellular DNA is operationally defined as the fraction of the total DNA pool that passes through a membrane filter (0.1 μm). It is composed of DNA-containing vesicles, viruses, and free DNA and is ubiquitous in all aquatic systems, although the sources, sinks, and ecological consequences are largely unknown. Using a method that provides separation of these three fractions, we compared open ocean depth profiles of DNA associated with each fraction. Pelagibacter-like DNA dominated the vesicle fractions for all samples examined over a depth range of 75 to 500 m. Viral DNA consisted predominantly of myovirus-like and podovirus-like DNA and contained the highest proportion of unannotated sequences. Euphotic zone free DNA (75 to 125 m) contained primarily bacterial and viral sequences, with bacteria dominating samples from the mesopelagic zone (500 to 1,000 m). A high proportion of mesopelagic zone free DNA sequences appeared to originate from surface waters, including a large amount of DNA contributed by high-light Prochlorococcus ecotypes. Throughout the water column, but especially in the mesopelagic zone, the composition of free DNA sequences was not always reflective of cooccurring microbial communities that inhabit the same sampling depth. These results reveal the composition of free DNA in different regions of the water column (euphotic and mesopelagic zones), with implications for dissolved organic matter cycling and export (by way of sinking particles and/or migratory zooplankton) as a delivery mechanism. IMPORTANCE With advances in metagenomic sequencing, the microbial composition of diverse environmental systems has been investigated, providing new perspectives on potential ecological dynamics and dimensions for experimental investigations. Here, we characterized exocellular free DNA via metagenomics, using a newly developed method that separates free DNA from cells, viruses, and vesicles, and facilitated the independent characterization of each fraction. The fate of this free DNA has both ecological consequences as a nutrient (N and P) source and potential evolutionary consequences as a source of genetic transformation. Here, we document different microbial sources of free DNA at the surface (0 to 200 m) versus depths of 250 to 1,000 m, suggesting that distinct free DNA production mechanisms may be present throughout the oligotrophic water column. Examining microbial processes through the lens of exocellular DNA provides insights into the production of labile dissolved organic matter (i.e., free DNA) at the surface (likely by viral lysis) and processes that influence the fate of sinking, surface-derived organic matter." @default.
- W4220682351 created "2022-04-03" @default.
- W4220682351 creator A5002392931 @default.
- W4220682351 creator A5031728792 @default.
- W4220682351 creator A5050834581 @default.
- W4220682351 creator A5066244533 @default.
- W4220682351 creator A5071312461 @default.
- W4220682351 creator A5073972702 @default.
- W4220682351 date "2022-04-12" @default.
- W4220682351 modified "2023-10-12" @default.
- W4220682351 title "Microbial Sources of Exocellular DNA in the Ocean" @default.
- W4220682351 cites W1485355315 @default.
- W4220682351 cites W1514974764 @default.
- W4220682351 cites W1526490425 @default.
- W4220682351 cites W1570777120 @default.
- W4220682351 cites W1572488649 @default.
- W4220682351 cites W1650841786 @default.
- W4220682351 cites W1861718839 @default.
- W4220682351 cites W1889818475 @default.
- W4220682351 cites W1943944416 @default.
- W4220682351 cites W1964252480 @default.
- W4220682351 cites W1965915467 @default.
- W4220682351 cites W1973951729 @default.
- W4220682351 cites W1977254935 @default.
- W4220682351 cites W1978126958 @default.
- W4220682351 cites W1988638366 @default.
- W4220682351 cites W1988962798 @default.
- W4220682351 cites W1994805030 @default.
- W4220682351 cites W2007623684 @default.
- W4220682351 cites W2011326366 @default.
- W4220682351 cites W2013278565 @default.
- W4220682351 cites W2023995732 @default.
- W4220682351 cites W2026777696 @default.
- W4220682351 cites W2029659778 @default.
- W4220682351 cites W2035475554 @default.
- W4220682351 cites W2036809023 @default.
- W4220682351 cites W2040834553 @default.
- W4220682351 cites W2064616195 @default.
- W4220682351 cites W2072937370 @default.
- W4220682351 cites W2080119881 @default.
- W4220682351 cites W2096044164 @default.
- W4220682351 cites W2096664383 @default.
- W4220682351 cites W2096717129 @default.
- W4220682351 cites W2114200698 @default.
- W4220682351 cites W2119296510 @default.
- W4220682351 cites W2131936060 @default.
- W4220682351 cites W2136353155 @default.
- W4220682351 cites W2137212309 @default.
- W4220682351 cites W2148657613 @default.
- W4220682351 cites W2149118757 @default.
- W4220682351 cites W2162758337 @default.
- W4220682351 cites W2163309320 @default.
- W4220682351 cites W2169313351 @default.
- W4220682351 cites W2189909264 @default.
- W4220682351 cites W2316999399 @default.
- W4220682351 cites W2326808737 @default.
- W4220682351 cites W2550469376 @default.
- W4220682351 cites W2555755558 @default.
- W4220682351 cites W2742651834 @default.
- W4220682351 cites W2764019192 @default.
- W4220682351 cites W2766452780 @default.
- W4220682351 cites W2769166250 @default.
- W4220682351 cites W2791206901 @default.
- W4220682351 cites W2806963076 @default.
- W4220682351 cites W2941042033 @default.
- W4220682351 cites W2965724775 @default.
- W4220682351 cites W2966159767 @default.
- W4220682351 cites W2977852611 @default.
- W4220682351 cites W2981929441 @default.
- W4220682351 cites W3000176746 @default.
- W4220682351 cites W3006143003 @default.
- W4220682351 cites W3014286189 @default.
- W4220682351 cites W3024895917 @default.
- W4220682351 cites W3116526633 @default.
- W4220682351 cites W3121425301 @default.
- W4220682351 cites W3123099606 @default.
- W4220682351 cites W3138767849 @default.
- W4220682351 cites W3144529879 @default.
- W4220682351 doi "https://doi.org/10.1128/aem.02093-21" @default.
- W4220682351 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35311515" @default.
- W4220682351 hasPublicationYear "2022" @default.
- W4220682351 type Work @default.
- W4220682351 citedByCount "3" @default.
- W4220682351 countsByYear W42206823512022 @default.
- W4220682351 countsByYear W42206823512023 @default.
- W4220682351 crossrefType "journal-article" @default.
- W4220682351 hasAuthorship W4220682351A5002392931 @default.
- W4220682351 hasAuthorship W4220682351A5031728792 @default.
- W4220682351 hasAuthorship W4220682351A5050834581 @default.
- W4220682351 hasAuthorship W4220682351A5066244533 @default.
- W4220682351 hasAuthorship W4220682351A5071312461 @default.
- W4220682351 hasAuthorship W4220682351A5073972702 @default.
- W4220682351 hasBestOaLocation W42206823511 @default.
- W4220682351 hasConcept C104317684 @default.
- W4220682351 hasConcept C122846477 @default.
- W4220682351 hasConcept C12554922 @default.
- W4220682351 hasConcept C130217890 @default.
- W4220682351 hasConcept C142796444 @default.
- W4220682351 hasConcept C15151743 @default.
- W4220682351 hasConcept C18903297 @default.