Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220683755> ?p ?o ?g. }
- W4220683755 endingPage "1693" @default.
- W4220683755 startingPage "1673" @default.
- W4220683755 abstract "Abstract. Deep learning is becoming an increasingly important way to produce accurate hydrological predictions across a wide range of spatial and temporal scales. Uncertainty estimations are critical for actionable hydrological prediction, and while standardized community benchmarks are becoming an increasingly important part of hydrological model development and research, similar tools for benchmarking uncertainty estimation are lacking. This contribution demonstrates that accurate uncertainty predictions can be obtained with deep learning. We establish an uncertainty estimation benchmarking procedure and present four deep learning baselines. Three baselines are based on mixture density networks, and one is based on Monte Carlo dropout. The results indicate that these approaches constitute strong baselines, especially the former ones. Additionally, we provide a post hoc model analysis to put forward some qualitative understanding of the resulting models. The analysis extends the notion of performance and shows that the model learns nuanced behaviors to account for different situations." @default.
- W4220683755 created "2022-04-03" @default.
- W4220683755 creator A5005882134 @default.
- W4220683755 creator A5025379780 @default.
- W4220683755 creator A5053148274 @default.
- W4220683755 creator A5053159516 @default.
- W4220683755 creator A5056054431 @default.
- W4220683755 creator A5056778863 @default.
- W4220683755 creator A5060375026 @default.
- W4220683755 creator A5079632405 @default.
- W4220683755 date "2022-03-31" @default.
- W4220683755 modified "2023-10-18" @default.
- W4220683755 title "Uncertainty estimation with deep learning for rainfall–runoff modeling" @default.
- W4220683755 cites W1574940769 @default.
- W4220683755 cites W1821341994 @default.
- W4220683755 cites W1919296332 @default.
- W4220683755 cites W1980854310 @default.
- W4220683755 cites W1990394889 @default.
- W4220683755 cites W2001317094 @default.
- W4220683755 cites W2024089565 @default.
- W4220683755 cites W2025720061 @default.
- W4220683755 cites W2031292142 @default.
- W4220683755 cites W2033904036 @default.
- W4220683755 cites W2063398787 @default.
- W4220683755 cites W2064675550 @default.
- W4220683755 cites W2066148124 @default.
- W4220683755 cites W2070086504 @default.
- W4220683755 cites W2084871407 @default.
- W4220683755 cites W2086030090 @default.
- W4220683755 cites W2086471526 @default.
- W4220683755 cites W2116383416 @default.
- W4220683755 cites W2119839985 @default.
- W4220683755 cites W2125579002 @default.
- W4220683755 cites W2134173303 @default.
- W4220683755 cites W2138763184 @default.
- W4220683755 cites W2147623518 @default.
- W4220683755 cites W2150668245 @default.
- W4220683755 cites W2169744906 @default.
- W4220683755 cites W2170396766 @default.
- W4220683755 cites W2172996688 @default.
- W4220683755 cites W2254515353 @default.
- W4220683755 cites W2315464927 @default.
- W4220683755 cites W2557007068 @default.
- W4220683755 cites W2603766970 @default.
- W4220683755 cites W2618236535 @default.
- W4220683755 cites W2751802138 @default.
- W4220683755 cites W2756368919 @default.
- W4220683755 cites W2800819102 @default.
- W4220683755 cites W2891071757 @default.
- W4220683755 cites W2908766529 @default.
- W4220683755 cites W2944493320 @default.
- W4220683755 cites W2989857225 @default.
- W4220683755 cites W2995149074 @default.
- W4220683755 cites W2997258543 @default.
- W4220683755 cites W3004665383 @default.
- W4220683755 cites W3018770027 @default.
- W4220683755 cites W3024402844 @default.
- W4220683755 cites W3045950546 @default.
- W4220683755 cites W3099909056 @default.
- W4220683755 cites W3127379605 @default.
- W4220683755 cites W4206173445 @default.
- W4220683755 cites W4236154693 @default.
- W4220683755 cites W4245401877 @default.
- W4220683755 doi "https://doi.org/10.5194/hess-26-1673-2022" @default.
- W4220683755 hasPublicationYear "2022" @default.
- W4220683755 type Work @default.
- W4220683755 citedByCount "23" @default.
- W4220683755 countsByYear W42206837552022 @default.
- W4220683755 countsByYear W42206837552023 @default.
- W4220683755 crossrefType "journal-article" @default.
- W4220683755 hasAuthorship W4220683755A5005882134 @default.
- W4220683755 hasAuthorship W4220683755A5025379780 @default.
- W4220683755 hasAuthorship W4220683755A5053148274 @default.
- W4220683755 hasAuthorship W4220683755A5053159516 @default.
- W4220683755 hasAuthorship W4220683755A5056054431 @default.
- W4220683755 hasAuthorship W4220683755A5056778863 @default.
- W4220683755 hasAuthorship W4220683755A5060375026 @default.
- W4220683755 hasAuthorship W4220683755A5079632405 @default.
- W4220683755 hasBestOaLocation W42206837551 @default.
- W4220683755 hasConcept C108583219 @default.
- W4220683755 hasConcept C119857082 @default.
- W4220683755 hasConcept C124101348 @default.
- W4220683755 hasConcept C126197015 @default.
- W4220683755 hasConcept C127313418 @default.
- W4220683755 hasConcept C144133560 @default.
- W4220683755 hasConcept C154945302 @default.
- W4220683755 hasConcept C159985019 @default.
- W4220683755 hasConcept C162324750 @default.
- W4220683755 hasConcept C162853370 @default.
- W4220683755 hasConcept C177803969 @default.
- W4220683755 hasConcept C187736073 @default.
- W4220683755 hasConcept C192562407 @default.
- W4220683755 hasConcept C204323151 @default.
- W4220683755 hasConcept C2776145597 @default.
- W4220683755 hasConcept C32230216 @default.
- W4220683755 hasConcept C41008148 @default.
- W4220683755 hasConcept C44154836 @default.
- W4220683755 hasConcept C49204034 @default.