Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220684013> ?p ?o ?g. }
- W4220684013 endingPage "594" @default.
- W4220684013 startingPage "594" @default.
- W4220684013 abstract "Background: CXCL16 attracts T-cells to the site of inflammation after cleaving by A Disintegrin and Metalloproteinase (ADAM10). Aim: The current study explored the role of ADAM10/CXCL16/T-cell/NF-κB in the initiation of type 1 diabetes (T1D) with special reference to the potential protecting role of resveratrol (RES). Methods: Four sets of Balb/c mice were created: a diabetes mellitus (DM) group (streptozotocin (STZ) 55 mg/kg, i.p.], a control group administered buffer, a RES group [RES, 50 mg/kg, i.p.), and a DM + RES group (RES (50 mg/kg, i.p.) and STZ (55 mg/kg, i.p.) administered daily for 12 days commencing from the fourth day of STZ injection). Histopathological changes, fasting blood insulin (FBI), glucose (FBG), serum and pancreatic ADAM10, CXCL16, NF-κB, T-cells pancreatic expression, inflammatory, and apoptotic markers were analyzed. Results: FBG, inflammatory and apoptotic markers, serum TNF-α, cellular CXCL16 and ADAM10 protein expression, pancreatic T-cell migration and NF-κB were significantly increased in diabetic mice compared to normal mice. RES significantly improved the biochemical and inflammatory parameters distorted in STZ-treated mice. Conclusions: ADAM10 promotes the cleaved form of CXCL16 driving T-cells into the islets of the pancreatic in T1D. RES successfully prevented the deleterious effect caused by STZ. ADAM10 and CXCL16 may serve as novel therapeutic targets for T1D." @default.
- W4220684013 created "2022-04-03" @default.
- W4220684013 creator A5004822000 @default.
- W4220684013 creator A5015951871 @default.
- W4220684013 creator A5079525898 @default.
- W4220684013 creator A5084539441 @default.
- W4220684013 creator A5088557564 @default.
- W4220684013 date "2022-03-09" @default.
- W4220684013 modified "2023-09-25" @default.
- W4220684013 title "Resveratrol Inhibited ADAM10 Mediated CXCL16-Cleavage and T-Cells Recruitment to Pancreatic β-Cells in Type 1 Diabetes Mellitus in Mice" @default.
- W4220684013 cites W1572212596 @default.
- W4220684013 cites W1910088801 @default.
- W4220684013 cites W1959097863 @default.
- W4220684013 cites W1964327195 @default.
- W4220684013 cites W1965026439 @default.
- W4220684013 cites W1969287946 @default.
- W4220684013 cites W1975619206 @default.
- W4220684013 cites W1978393275 @default.
- W4220684013 cites W1978607785 @default.
- W4220684013 cites W1995411333 @default.
- W4220684013 cites W2002269578 @default.
- W4220684013 cites W2005930328 @default.
- W4220684013 cites W2019383589 @default.
- W4220684013 cites W2020267609 @default.
- W4220684013 cites W2022636917 @default.
- W4220684013 cites W2031737496 @default.
- W4220684013 cites W2031882974 @default.
- W4220684013 cites W2044024385 @default.
- W4220684013 cites W2054156175 @default.
- W4220684013 cites W2065288114 @default.
- W4220684013 cites W2074646211 @default.
- W4220684013 cites W2087238404 @default.
- W4220684013 cites W2088676602 @default.
- W4220684013 cites W2089934054 @default.
- W4220684013 cites W2089943399 @default.
- W4220684013 cites W2092592955 @default.
- W4220684013 cites W2093498736 @default.
- W4220684013 cites W2105173724 @default.
- W4220684013 cites W2109111384 @default.
- W4220684013 cites W2109287067 @default.
- W4220684013 cites W2113707537 @default.
- W4220684013 cites W2115337518 @default.
- W4220684013 cites W2119304571 @default.
- W4220684013 cites W2135789820 @default.
- W4220684013 cites W2136984024 @default.
- W4220684013 cites W2146887970 @default.
- W4220684013 cites W2148511893 @default.
- W4220684013 cites W2154241793 @default.
- W4220684013 cites W2157668882 @default.
- W4220684013 cites W2162119341 @default.
- W4220684013 cites W2163718454 @default.
- W4220684013 cites W2167898988 @default.
- W4220684013 cites W2337615541 @default.
- W4220684013 cites W2367407878 @default.
- W4220684013 cites W2405977822 @default.
- W4220684013 cites W2410417491 @default.
- W4220684013 cites W2424600743 @default.
- W4220684013 cites W2544255112 @default.
- W4220684013 cites W2560305906 @default.
- W4220684013 cites W2751466219 @default.
- W4220684013 cites W2778833376 @default.
- W4220684013 cites W2793935842 @default.
- W4220684013 cites W2900409082 @default.
- W4220684013 cites W2909156697 @default.
- W4220684013 cites W2917078209 @default.
- W4220684013 cites W2937059693 @default.
- W4220684013 cites W2938672864 @default.
- W4220684013 cites W2945743914 @default.
- W4220684013 cites W2953795434 @default.
- W4220684013 cites W3038328008 @default.
- W4220684013 cites W3046070524 @default.
- W4220684013 cites W3121155413 @default.
- W4220684013 cites W3130630775 @default.
- W4220684013 cites W3148948011 @default.
- W4220684013 cites W4200210929 @default.
- W4220684013 doi "https://doi.org/10.3390/pharmaceutics14030594" @default.
- W4220684013 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35335970" @default.
- W4220684013 hasPublicationYear "2022" @default.
- W4220684013 type Work @default.
- W4220684013 citedByCount "2" @default.
- W4220684013 countsByYear W42206840132023 @default.
- W4220684013 crossrefType "journal-article" @default.
- W4220684013 hasAuthorship W4220684013A5004822000 @default.
- W4220684013 hasAuthorship W4220684013A5015951871 @default.
- W4220684013 hasAuthorship W4220684013A5079525898 @default.
- W4220684013 hasAuthorship W4220684013A5084539441 @default.
- W4220684013 hasAuthorship W4220684013A5088557564 @default.
- W4220684013 hasBestOaLocation W42206840131 @default.
- W4220684013 hasConcept C109523444 @default.
- W4220684013 hasConcept C126322002 @default.
- W4220684013 hasConcept C13373296 @default.
- W4220684013 hasConcept C134018914 @default.
- W4220684013 hasConcept C135576274 @default.
- W4220684013 hasConcept C165220095 @default.
- W4220684013 hasConcept C185592680 @default.
- W4220684013 hasConcept C190283241 @default.
- W4220684013 hasConcept C2776914184 @default.
- W4220684013 hasConcept C2778013207 @default.