Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220688097> ?p ?o ?g. }
- W4220688097 abstract "In many fluid experiments, we can only obtain low-spatial high-temporal resolution flow images and high-spatial low-temporal resolution flow images due to the limitation of high-speed imaging systems. To solve this problem, we proposed a degradation and super-resolution attention model (D-SRA) using unsupervised machine learning to super-resolution reconstruct high resolution (HR) time-resolved fluid images from coarse data. Unlike the prior research to increase the resolution of coarse data artificially generated by simple bilinear down-sampling, our model that consists of a degradation neural network and a super-resolution neural network aims to learn the mappings between experimental low-resolution data and corresponding HR data. What is more, channel and spatial attention modules are also adopted in D-SRA to facilitate the restoration of abundant and critical details of flow fields. The proposed model is validated by two high-speed schlieren experiments of under-expanded impinging supersonic jets. The comprehensive capability of D-SRA is statistically analyzed based on the synthetic unpaired schlieren images. The spatial-resolution of coarse images can be successfully augmented by 42 times and 82 times with most physical details recovered perfectly, which outperforms the existing method. The D-SRA also exhibits considerable generalization and robustness against unknown-degenerated schlieren images. Moreover, the practicability of the proposed method is also further explored on real unpaired jets schlieren images. It is convincingly demonstrated that the present study successfully surpasses the performance limitations of high-speed cameras and has significant applications in various fluid experiments to obtain flow images with high spatial and temporal resolution." @default.
- W4220688097 created "2022-04-03" @default.
- W4220688097 creator A5008830864 @default.
- W4220688097 creator A5019341061 @default.
- W4220688097 creator A5034999646 @default.
- W4220688097 creator A5035329666 @default.
- W4220688097 creator A5037880356 @default.
- W4220688097 creator A5057784610 @default.
- W4220688097 creator A5065058975 @default.
- W4220688097 date "2022-03-01" @default.
- W4220688097 modified "2023-09-30" @default.
- W4220688097 title "Deep-learning-based super-resolution reconstruction of high-speed imaging in fluids" @default.
- W4220688097 cites W1990002486 @default.
- W4220688097 cites W2005739164 @default.
- W4220688097 cites W2013593461 @default.
- W4220688097 cites W2063012696 @default.
- W4220688097 cites W2084078542 @default.
- W4220688097 cites W2110360252 @default.
- W4220688097 cites W2111303024 @default.
- W4220688097 cites W2534240011 @default.
- W4220688097 cites W2770660451 @default.
- W4220688097 cites W2782959093 @default.
- W4220688097 cites W2795982117 @default.
- W4220688097 cites W2902480423 @default.
- W4220688097 cites W2919115771 @default.
- W4220688097 cites W2939941192 @default.
- W4220688097 cites W2951279763 @default.
- W4220688097 cites W2954916084 @default.
- W4220688097 cites W2963408106 @default.
- W4220688097 cites W2963986095 @default.
- W4220688097 cites W2964128214 @default.
- W4220688097 cites W2981246174 @default.
- W4220688097 cites W2987245967 @default.
- W4220688097 cites W2992578100 @default.
- W4220688097 cites W2997402771 @default.
- W4220688097 cites W3004360475 @default.
- W4220688097 cites W3005641041 @default.
- W4220688097 cites W3012591061 @default.
- W4220688097 cites W3020274705 @default.
- W4220688097 cites W3047006557 @default.
- W4220688097 cites W3084005163 @default.
- W4220688097 cites W3093027387 @default.
- W4220688097 cites W3095187049 @default.
- W4220688097 cites W3097982101 @default.
- W4220688097 cites W3102140816 @default.
- W4220688097 cites W3112982180 @default.
- W4220688097 cites W3114871366 @default.
- W4220688097 cites W3118375192 @default.
- W4220688097 cites W3120515765 @default.
- W4220688097 cites W3123789135 @default.
- W4220688097 cites W3128803576 @default.
- W4220688097 cites W3129530645 @default.
- W4220688097 cites W3134546754 @default.
- W4220688097 cites W3135143354 @default.
- W4220688097 cites W3137253052 @default.
- W4220688097 cites W3148298406 @default.
- W4220688097 cites W3158608334 @default.
- W4220688097 cites W3162533428 @default.
- W4220688097 cites W3163453057 @default.
- W4220688097 cites W3172576596 @default.
- W4220688097 cites W3178483730 @default.
- W4220688097 cites W3185689115 @default.
- W4220688097 cites W3197687099 @default.
- W4220688097 cites W3198740648 @default.
- W4220688097 cites W3209204772 @default.
- W4220688097 cites W3210779799 @default.
- W4220688097 doi "https://doi.org/10.1063/5.0078644" @default.
- W4220688097 hasPublicationYear "2022" @default.
- W4220688097 type Work @default.
- W4220688097 citedByCount "12" @default.
- W4220688097 countsByYear W42206880972022 @default.
- W4220688097 countsByYear W42206880972023 @default.
- W4220688097 crossrefType "journal-article" @default.
- W4220688097 hasAuthorship W4220688097A5008830864 @default.
- W4220688097 hasAuthorship W4220688097A5019341061 @default.
- W4220688097 hasAuthorship W4220688097A5034999646 @default.
- W4220688097 hasAuthorship W4220688097A5035329666 @default.
- W4220688097 hasAuthorship W4220688097A5037880356 @default.
- W4220688097 hasAuthorship W4220688097A5057784610 @default.
- W4220688097 hasAuthorship W4220688097A5065058975 @default.
- W4220688097 hasConcept C104317684 @default.
- W4220688097 hasConcept C117248102 @default.
- W4220688097 hasConcept C119666444 @default.
- W4220688097 hasConcept C120665830 @default.
- W4220688097 hasConcept C121332964 @default.
- W4220688097 hasConcept C154945302 @default.
- W4220688097 hasConcept C185592680 @default.
- W4220688097 hasConcept C205372480 @default.
- W4220688097 hasConcept C31972630 @default.
- W4220688097 hasConcept C41008148 @default.
- W4220688097 hasConcept C55493867 @default.
- W4220688097 hasConcept C63479239 @default.
- W4220688097 hasConceptScore W4220688097C104317684 @default.
- W4220688097 hasConceptScore W4220688097C117248102 @default.
- W4220688097 hasConceptScore W4220688097C119666444 @default.
- W4220688097 hasConceptScore W4220688097C120665830 @default.
- W4220688097 hasConceptScore W4220688097C121332964 @default.
- W4220688097 hasConceptScore W4220688097C154945302 @default.
- W4220688097 hasConceptScore W4220688097C185592680 @default.
- W4220688097 hasConceptScore W4220688097C205372480 @default.