Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220689548> ?p ?o ?g. }
- W4220689548 abstract "<p indent=0mm>As one of the most charming and attractive technologies, photocatalytic overall water-splitting using solar energy is known as a feasible and efficient route to alleviate energy crisis and environmental pollution. Since the seminal work of photocatalytic decomposition of H<sub>2</sub>O into H<sub>2</sub> and O<sub>2</sub> on a Pt/TiO<sub>2</sub> electrode by Fujishima and Honda in 1972, photocatalytic water splitting has been persistently investigated, achieving many remarkable advancements. In principle, photocatalytic water splitting reaction mainly involves the following fundamental processes: Absorption of photons induces electron transition and forms electron-hole pairs; then the photogenerated electron-hole pairs separate and migrate to the surface of the photocatalyst; finally, redox reaction occurs on the surface. Therefore, to develop high-performance photocatalysts, several criteria must be fulfilled, including a moderate band gap that should be larger than <sc>1.23 eV</sc> but lower than <sc>3.0 eV</sc> to maximize absorption and utilization solar light, the ability of rapid separation and transfer of carriers, and the suitable band edge alignment to straddle the redox potentials of water. To this end, numerous efforts have been devoted to searching for photocatalytic candidates. In recent years, two-dimensional (2D) materials, e.g., g-C<sub>3</sub>N<sub>4</sub>, phosphorene and transition-metal dichalcogenides, have been identified as the potential photocatalysts candidates for water splitting. Compared with the bulk materials, 2D materials hold excellent ability of optical adsorption, short carrier migration distance, high carrier mobility, large specific surface area, and abundant active sites. Therefore, the 2D materials are desirable for high-performance photocatalysts. Nevertheless, most of the 2D photocatalysts for water splitting have the structural symmetry along the out-of-plane direction, which mainly harvests the ultraviolet light and limits the efficiency of solar energy utilization. Some new materials and mechanisms for photocatalytic water-splitting are urgently needed. Interestingly, the asymmetric 2D materials with the intrinsic dipole moment, termed as 2D polar materials, show exciting prospects for the photocatalytic applications with high efficiency. The intrinsic dipole moment in 2D polar materials not only accelerates the separation of photogenerated carriers but also is good for relieving the conventional restriction of <sc>1.23 eV</sc> for band gap of photocatalysts, leading to a widened light absorption region (from visible to near-infrared light). Thus, the solar energy utilization efficiency will be substantially enhanced. Motivated by this mechanism, some 2D polar photocatalysts are proposed, such as MXY (M=W, Mo, Cr, Pt; X, Y=S, Se, Te, X<x content-type=symbol>¹</x>Y), M<sub>2</sub>XY (M=Ga, In; X, Y=S, Se, Te, X<x content-type=symbol>¹</x>Y), and M<sub>2</sub>X<sub>3 </sub>(M=Al, Ga, In; X=S, Se, Te). In this review, we outline the recent progress in material discovery and photocatalytic characteristics of the different types of 2D polar photocatalysts, including Janus materials and ferroelectrics. The underlying mechanisms for polarization-promoted photocatalysis are discussed to better understand the role of 2D polar materials in photocatalysis. After the presentation of the experimental efforts on 2D polar materials, we conclude with a discussion of the emerging challenges and new perspective for future research and development on 2D polar photocatalysts. We hope that this review, with a specific focus on 2D polar photocatalysts, would help readers gain deep understandings on 2D polar material-based photocatalysts and in turn stimulate further both theoretical and experimental efforts." @default.
- W4220689548 created "2022-04-03" @default.
- W4220689548 creator A5016102939 @default.
- W4220689548 creator A5028235866 @default.
- W4220689548 creator A5047950518 @default.
- W4220689548 date "2022-03-01" @default.
- W4220689548 modified "2023-10-12" @default.
- W4220689548 title "Two-dimensional polar materials for photocatalytic water splitting" @default.
- W4220689548 cites W1965036343 @default.
- W4220689548 cites W1971113415 @default.
- W4220689548 cites W1977545173 @default.
- W4220689548 cites W1982086087 @default.
- W4220689548 cites W1992464644 @default.
- W4220689548 cites W2009924367 @default.
- W4220689548 cites W2012042716 @default.
- W4220689548 cites W2025806519 @default.
- W4220689548 cites W2030938880 @default.
- W4220689548 cites W2032877817 @default.
- W4220689548 cites W2042492216 @default.
- W4220689548 cites W2047218923 @default.
- W4220689548 cites W2053719037 @default.
- W4220689548 cites W2064583131 @default.
- W4220689548 cites W2071528111 @default.
- W4220689548 cites W2076231656 @default.
- W4220689548 cites W2079657036 @default.
- W4220689548 cites W2087870211 @default.
- W4220689548 cites W2113093873 @default.
- W4220689548 cites W2113942925 @default.
- W4220689548 cites W2127453425 @default.
- W4220689548 cites W2150399639 @default.
- W4220689548 cites W2154903153 @default.
- W4220689548 cites W2159132437 @default.
- W4220689548 cites W2292017404 @default.
- W4220689548 cites W2327222367 @default.
- W4220689548 cites W2331835283 @default.
- W4220689548 cites W2338476969 @default.
- W4220689548 cites W2346956654 @default.
- W4220689548 cites W2508408601 @default.
- W4220689548 cites W2548767131 @default.
- W4220689548 cites W2581395305 @default.
- W4220689548 cites W2604226379 @default.
- W4220689548 cites W2605317103 @default.
- W4220689548 cites W2608790738 @default.
- W4220689548 cites W2614371951 @default.
- W4220689548 cites W2624238387 @default.
- W4220689548 cites W2668221079 @default.
- W4220689548 cites W2741257603 @default.
- W4220689548 cites W2747884380 @default.
- W4220689548 cites W2763525349 @default.
- W4220689548 cites W2763913109 @default.
- W4220689548 cites W2767753867 @default.
- W4220689548 cites W2782168144 @default.
- W4220689548 cites W2783132664 @default.
- W4220689548 cites W2783155164 @default.
- W4220689548 cites W2783830729 @default.
- W4220689548 cites W2787765020 @default.
- W4220689548 cites W2791767764 @default.
- W4220689548 cites W2806995642 @default.
- W4220689548 cites W2838096047 @default.
- W4220689548 cites W2886080302 @default.
- W4220689548 cites W2889604470 @default.
- W4220689548 cites W2890045705 @default.
- W4220689548 cites W2890318273 @default.
- W4220689548 cites W2896372153 @default.
- W4220689548 cites W2897582393 @default.
- W4220689548 cites W2897927724 @default.
- W4220689548 cites W2902416803 @default.
- W4220689548 cites W2905173712 @default.
- W4220689548 cites W2913960833 @default.
- W4220689548 cites W2921484027 @default.
- W4220689548 cites W2939045446 @default.
- W4220689548 cites W2955718994 @default.
- W4220689548 cites W2972397415 @default.
- W4220689548 cites W2974136696 @default.
- W4220689548 cites W2979702245 @default.
- W4220689548 cites W2981526699 @default.
- W4220689548 cites W2989970511 @default.
- W4220689548 cites W2998551680 @default.
- W4220689548 cites W3010457982 @default.
- W4220689548 cites W3013755101 @default.
- W4220689548 cites W3017382490 @default.
- W4220689548 cites W3032930389 @default.
- W4220689548 cites W3033858499 @default.
- W4220689548 cites W3035361472 @default.
- W4220689548 cites W3100503782 @default.
- W4220689548 cites W3111245620 @default.
- W4220689548 cites W3157678182 @default.
- W4220689548 cites W3165306522 @default.
- W4220689548 cites W3167239942 @default.
- W4220689548 cites W3171647639 @default.
- W4220689548 cites W3199327437 @default.
- W4220689548 cites W3204981174 @default.
- W4220689548 doi "https://doi.org/10.1360/tb-2021-1379" @default.
- W4220689548 hasPublicationYear "2022" @default.
- W4220689548 type Work @default.
- W4220689548 citedByCount "1" @default.
- W4220689548 countsByYear W42206895482022 @default.
- W4220689548 crossrefType "journal-article" @default.
- W4220689548 hasAuthorship W4220689548A5016102939 @default.
- W4220689548 hasAuthorship W4220689548A5028235866 @default.