Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220689621> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4220689621 endingPage "1797" @default.
- W4220689621 startingPage "1784" @default.
- W4220689621 abstract "Human-robot collaboration (HRC), where humans and robots work together to handle specific tasks, requires designing robots that can effectively support human beings. Robots need to conduct reasoning using commonsense knowledge (CSK), e.g., fundamental knowledge that humans possess and use subconsciously, in order to assist humans in challenging and dynamic environments. Currently, there are several effective CSK systems used for organizing information and facts, along with detecting objects and determining their properties. HRC is employed in various manufacturing tasks, such as paint spraying and assembly, in order to keep humans safe while increasing efficiency. Although there is a large array of research on HRC and on CSK, there is minimal research linking the two concepts together. This paper presents a novel system on human-robot collaboration guided by commonsense reasoning for automation in manufacturing tasks. This fits within the general realm of smart manufacturing. The primary focus is on improving the efficacy of human-robot co-assembly tasks. Evaluations conducted with online simulations and real-world experiments indicate that reasoning using CSK-based robot priorities enhances HRC as compared to simpler robot priorities, e.g., merely handling nearby objects. This system is modifiable and can be used for larger and more complex real-world tasks, thereby leading to improved automation in manufacturing. This paper demonstrates the scope of combining HRC and CSK, while future works will be able to further utilize the benefits of combining the two fields with significant impacts. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Note to Practitioners</i> —This paper is motivated by the human-robot collaboration problem in smart manufacturing. Robots operating by reasoning with commonsense priorities in human-robot collaboration enable faster task execution and better human work life. This can help balance work for humans and prevent injury. Adding robots to tasks accordingly does not necessarily decrease costs, but can limit human exposure to danger which is significant (and can also lower costs overall). Simulations and real-world experiments in our research using commonsense reasoning demonstrate how work is easier and better with human-robot collaboration. These factors are highly significant when tasks are repeated multiple times. The system is presented within automated manufacturing and is scalable for different real-world applications. Such automation is particularly helpful during recent times in the aftermath of the COVID-19 pandemic." @default.
- W4220689621 created "2022-04-03" @default.
- W4220689621 creator A5031750708 @default.
- W4220689621 creator A5072805673 @default.
- W4220689621 creator A5090253347 @default.
- W4220689621 date "2022-07-01" @default.
- W4220689621 modified "2023-10-02" @default.
- W4220689621 title "Human-Robot Collaboration With Commonsense Reasoning in Smart Manufacturing Contexts" @default.
- W4220689621 cites W1552847225 @default.
- W4220689621 cites W1996092409 @default.
- W4220689621 cites W2016089260 @default.
- W4220689621 cites W2068127265 @default.
- W4220689621 cites W2091997514 @default.
- W4220689621 cites W2187877333 @default.
- W4220689621 cites W2584792247 @default.
- W4220689621 cites W2740432174 @default.
- W4220689621 cites W2783894900 @default.
- W4220689621 cites W2788276261 @default.
- W4220689621 cites W2792026792 @default.
- W4220689621 cites W2799907313 @default.
- W4220689621 cites W2803301731 @default.
- W4220689621 cites W2804124418 @default.
- W4220689621 cites W2805639392 @default.
- W4220689621 cites W2887971674 @default.
- W4220689621 cites W2895599712 @default.
- W4220689621 cites W2903982116 @default.
- W4220689621 cites W2905033225 @default.
- W4220689621 cites W2910395230 @default.
- W4220689621 cites W2911279163 @default.
- W4220689621 cites W2963460509 @default.
- W4220689621 cites W3038108037 @default.
- W4220689621 cites W3092095117 @default.
- W4220689621 cites W3118885154 @default.
- W4220689621 cites W3134687547 @default.
- W4220689621 cites W3138587526 @default.
- W4220689621 cites W3161268642 @default.
- W4220689621 cites W4235599705 @default.
- W4220689621 cites W4255876299 @default.
- W4220689621 cites W4285481058 @default.
- W4220689621 cites W3081879054 @default.
- W4220689621 doi "https://doi.org/10.1109/tase.2022.3159595" @default.
- W4220689621 hasPublicationYear "2022" @default.
- W4220689621 type Work @default.
- W4220689621 citedByCount "5" @default.
- W4220689621 countsByYear W42206896212022 @default.
- W4220689621 countsByYear W42206896212023 @default.
- W4220689621 crossrefType "journal-article" @default.
- W4220689621 hasAuthorship W4220689621A5031750708 @default.
- W4220689621 hasAuthorship W4220689621A5072805673 @default.
- W4220689621 hasAuthorship W4220689621A5090253347 @default.
- W4220689621 hasConcept C107457646 @default.
- W4220689621 hasConcept C115901376 @default.
- W4220689621 hasConcept C127413603 @default.
- W4220689621 hasConcept C154945302 @default.
- W4220689621 hasConcept C199360897 @default.
- W4220689621 hasConcept C2778012447 @default.
- W4220689621 hasConcept C34413123 @default.
- W4220689621 hasConcept C41008148 @default.
- W4220689621 hasConcept C78519656 @default.
- W4220689621 hasConcept C90509273 @default.
- W4220689621 hasConceptScore W4220689621C107457646 @default.
- W4220689621 hasConceptScore W4220689621C115901376 @default.
- W4220689621 hasConceptScore W4220689621C127413603 @default.
- W4220689621 hasConceptScore W4220689621C154945302 @default.
- W4220689621 hasConceptScore W4220689621C199360897 @default.
- W4220689621 hasConceptScore W4220689621C2778012447 @default.
- W4220689621 hasConceptScore W4220689621C34413123 @default.
- W4220689621 hasConceptScore W4220689621C41008148 @default.
- W4220689621 hasConceptScore W4220689621C78519656 @default.
- W4220689621 hasConceptScore W4220689621C90509273 @default.
- W4220689621 hasFunder F4320306076 @default.
- W4220689621 hasIssue "3" @default.
- W4220689621 hasLocation W42206896211 @default.
- W4220689621 hasOpenAccess W4220689621 @default.
- W4220689621 hasPrimaryLocation W42206896211 @default.
- W4220689621 hasRelatedWork W200039263 @default.
- W4220689621 hasRelatedWork W22140212 @default.
- W4220689621 hasRelatedWork W2384870643 @default.
- W4220689621 hasRelatedWork W2948613463 @default.
- W4220689621 hasRelatedWork W3104741192 @default.
- W4220689621 hasRelatedWork W4292103105 @default.
- W4220689621 hasRelatedWork W4296041477 @default.
- W4220689621 hasRelatedWork W4381745702 @default.
- W4220689621 hasRelatedWork W2992534160 @default.
- W4220689621 hasRelatedWork W2999681219 @default.
- W4220689621 hasVolume "19" @default.
- W4220689621 isParatext "false" @default.
- W4220689621 isRetracted "false" @default.
- W4220689621 workType "article" @default.