Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220689712> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4220689712 abstract "Background: With the global increase of Cesarean section delivery rates, the long-term effects of Cesarean delivery have started to become more clear. One of the most prominent complications of Cesarean section in recurrent pregnancies is uterine rupture. Assessing the risk of uterine rupture or dehiscence is very important in order to prevent untimely operations and/or maternal and fetal complications. Objective: Our study aims to assess whether machine learning can be used to predict uterine dehiscence or rupture by using patients' ultrasonographic findings, clinical findings and demographic data as features. Hence, possible uterine rupture, as well as maternal and fetal complications pertinent to it, could be prevented. Study Design: The study was conducted on 317 patients with term (>37 weeks) singleton pregnancy. Demographics, body-mass indices, smoking and drinking habits, clinical features, past pregnancies, number and history of abortions, inter-delivery period, gestation week, number of previous Cesarean operations, fetal presentation, fetal weight, tocography data, trans-abdominal ultrasonographic measurement of lower uterine segment full thickness and myometrium thickness, lower uterine segment findings during Cesarean section were collected and analyzed using machine learning techniques. Logistic Regression, Multilayer Perceptron, Support Vector Machine, Random Forest and Naive Bayes algorithms were used for classification. The dataset was evaluated using 10-fold cross-validation. Correct Classification Rate, F-score, Matthews Correlation Coefficient, Precision-Recall Curve area and Receiver Operating Characteristics area were used as performance metrics. Results: Among the machine learning techniques that has been tested in this study, Naive Bayes algorithm showed the best prediction performance. Among the various combinations of features used for prediction, the essential features of parity, gravida, tocographic contraction, dilation, d&c with the sonographic thickness of lower uterine segment myometrium yielded the best results. The runner-up performance was obtained with the sonographic full thickness of lower uterine segment added to the base features. The base features alone can classify patients with 90.5% accuracy, while adding the myometrium measurement increases the classification performance by 5.1% to 95.6%. Adding the full thickness measurement to the base features raises the classification performance by 4.8% to 95.3% in terms of Correct Classification Rate. Conclusion: Naive Bayes algorithm can correctly classify uterine rupture or dehiscence with a Correct Classification Rate of 0.953, an F-score of 0.952 and a Matthews Correlation Coefficient value of 0.641. This result can be interpreted such that by using clinical features and lower uterine segment ultrasonography findings, machine learning can be used to accurately predict uterine rupture or dehiscence." @default.
- W4220689712 created "2022-04-03" @default.
- W4220689712 creator A5031815318 @default.
- W4220689712 creator A5058143431 @default.
- W4220689712 creator A5069890582 @default.
- W4220689712 creator A5090865035 @default.
- W4220689712 date "2022-03-24" @default.
- W4220689712 modified "2023-09-28" @default.
- W4220689712 title "Prediction of Uterine Dehiscence via Machine Learning by Using Lower Uterine Segment Thickness and Clinical Features" @default.
- W4220689712 doi "https://doi.org/10.1101/2022.03.23.22272815" @default.
- W4220689712 hasPublicationYear "2022" @default.
- W4220689712 type Work @default.
- W4220689712 citedByCount "0" @default.
- W4220689712 crossrefType "posted-content" @default.
- W4220689712 hasAuthorship W4220689712A5031815318 @default.
- W4220689712 hasAuthorship W4220689712A5058143431 @default.
- W4220689712 hasAuthorship W4220689712A5069890582 @default.
- W4220689712 hasAuthorship W4220689712A5090865035 @default.
- W4220689712 hasBestOaLocation W42206897121 @default.
- W4220689712 hasConcept C119857082 @default.
- W4220689712 hasConcept C12267149 @default.
- W4220689712 hasConcept C126322002 @default.
- W4220689712 hasConcept C131872663 @default.
- W4220689712 hasConcept C139812875 @default.
- W4220689712 hasConcept C141071460 @default.
- W4220689712 hasConcept C151956035 @default.
- W4220689712 hasConcept C169258074 @default.
- W4220689712 hasConcept C2778376644 @default.
- W4220689712 hasConcept C2779066055 @default.
- W4220689712 hasConcept C2779234561 @default.
- W4220689712 hasConcept C2779319320 @default.
- W4220689712 hasConcept C29456083 @default.
- W4220689712 hasConcept C34626388 @default.
- W4220689712 hasConcept C41008148 @default.
- W4220689712 hasConcept C52001869 @default.
- W4220689712 hasConcept C54355233 @default.
- W4220689712 hasConcept C58471807 @default.
- W4220689712 hasConcept C71924100 @default.
- W4220689712 hasConcept C86803240 @default.
- W4220689712 hasConceptScore W4220689712C119857082 @default.
- W4220689712 hasConceptScore W4220689712C12267149 @default.
- W4220689712 hasConceptScore W4220689712C126322002 @default.
- W4220689712 hasConceptScore W4220689712C131872663 @default.
- W4220689712 hasConceptScore W4220689712C139812875 @default.
- W4220689712 hasConceptScore W4220689712C141071460 @default.
- W4220689712 hasConceptScore W4220689712C151956035 @default.
- W4220689712 hasConceptScore W4220689712C169258074 @default.
- W4220689712 hasConceptScore W4220689712C2778376644 @default.
- W4220689712 hasConceptScore W4220689712C2779066055 @default.
- W4220689712 hasConceptScore W4220689712C2779234561 @default.
- W4220689712 hasConceptScore W4220689712C2779319320 @default.
- W4220689712 hasConceptScore W4220689712C29456083 @default.
- W4220689712 hasConceptScore W4220689712C34626388 @default.
- W4220689712 hasConceptScore W4220689712C41008148 @default.
- W4220689712 hasConceptScore W4220689712C52001869 @default.
- W4220689712 hasConceptScore W4220689712C54355233 @default.
- W4220689712 hasConceptScore W4220689712C58471807 @default.
- W4220689712 hasConceptScore W4220689712C71924100 @default.
- W4220689712 hasConceptScore W4220689712C86803240 @default.
- W4220689712 hasLocation W42206897121 @default.
- W4220689712 hasOpenAccess W4220689712 @default.
- W4220689712 hasPrimaryLocation W42206897121 @default.
- W4220689712 hasRelatedWork W3087105065 @default.
- W4220689712 hasRelatedWork W3137532542 @default.
- W4220689712 hasRelatedWork W4205415703 @default.
- W4220689712 hasRelatedWork W4225312515 @default.
- W4220689712 hasRelatedWork W4225984265 @default.
- W4220689712 hasRelatedWork W4246246790 @default.
- W4220689712 hasRelatedWork W4281846282 @default.
- W4220689712 hasRelatedWork W4310982196 @default.
- W4220689712 hasRelatedWork W4367596031 @default.
- W4220689712 hasRelatedWork W4376059206 @default.
- W4220689712 isParatext "false" @default.
- W4220689712 isRetracted "false" @default.
- W4220689712 workType "article" @default.