Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220689948> ?p ?o ?g. }
- W4220689948 endingPage "226" @default.
- W4220689948 startingPage "226" @default.
- W4220689948 abstract "Trees are the key components of urban vegetation in cities. The timely and accurate identification of existing urban tree species with their location is the most important task for improving air, water, and land quality; reducing carbon accumulation; mitigating urban heat island effects; and protecting soil and water balance. Light detection and ranging (LiDAR) is frequently used for extracting high-resolution structural information regarding tree objects. LiDAR systems are a cost-effective alternative to the traditional ways of identifying tree species, such as field surveys and aerial photograph interpretation. The aim of this work was to assess the usage of machine learning algorithms for classifying the deciduous (broadleaf) and coniferous tree species from 3D raw LiDAR data on the Davutpasa Campus of Yildiz Technical University, Istanbul, Turkey. First, ground, building, and low, medium, and high vegetation classes were acquired from raw LiDAR data using a hierarchical-rule-based classification method. Next, individual tree crowns were segmented using a mean shift clustering algorithm from high vegetation points. A total of 25 spatial- and intensity-based features were utilized for support vector machine (SVM), random forest (RF), and multi-layer perceptron (MLP) classifiers to discriminate deciduous and coniferous tree species in the urban area. The machine learning-based classification’s overall accuracies were 80%, 83.75%, and 73.75% for the SVM, RF, and MLP classifiers, respectively, in split 70/30 (training/testing). The SVM and RF algorithms generally gave better classification results than the MLP algorithm for identifying the urban tree species." @default.
- W4220689948 created "2022-04-03" @default.
- W4220689948 creator A5054827052 @default.
- W4220689948 creator A5080447283 @default.
- W4220689948 date "2022-03-26" @default.
- W4220689948 modified "2023-10-16" @default.
- W4220689948 title "The Use of Machine Learning Algorithms in Urban Tree Species Classification" @default.
- W4220689948 cites W1496825334 @default.
- W4220689948 cites W1520812622 @default.
- W4220689948 cites W1626024464 @default.
- W4220689948 cites W1979678339 @default.
- W4220689948 cites W1992874035 @default.
- W4220689948 cites W1994668970 @default.
- W4220689948 cites W2000532370 @default.
- W4220689948 cites W2001832926 @default.
- W4220689948 cites W2004553299 @default.
- W4220689948 cites W2017387468 @default.
- W4220689948 cites W2017517123 @default.
- W4220689948 cites W2026740818 @default.
- W4220689948 cites W2037036168 @default.
- W4220689948 cites W2037282532 @default.
- W4220689948 cites W2039067795 @default.
- W4220689948 cites W2041642242 @default.
- W4220689948 cites W2051680981 @default.
- W4220689948 cites W2056380340 @default.
- W4220689948 cites W2056438763 @default.
- W4220689948 cites W2061236284 @default.
- W4220689948 cites W2063396028 @default.
- W4220689948 cites W2068067793 @default.
- W4220689948 cites W2069127380 @default.
- W4220689948 cites W2070857546 @default.
- W4220689948 cites W2080320524 @default.
- W4220689948 cites W2080680225 @default.
- W4220689948 cites W2081823205 @default.
- W4220689948 cites W2084291846 @default.
- W4220689948 cites W2090858999 @default.
- W4220689948 cites W2097337758 @default.
- W4220689948 cites W2106488983 @default.
- W4220689948 cites W2125321646 @default.
- W4220689948 cites W2126058313 @default.
- W4220689948 cites W2129731647 @default.
- W4220689948 cites W2131256165 @default.
- W4220689948 cites W2136651098 @default.
- W4220689948 cites W2147197381 @default.
- W4220689948 cites W2147547492 @default.
- W4220689948 cites W2164500538 @default.
- W4220689948 cites W2181716224 @default.
- W4220689948 cites W2188767531 @default.
- W4220689948 cites W2206762869 @default.
- W4220689948 cites W2250360112 @default.
- W4220689948 cites W2252594427 @default.
- W4220689948 cites W2253886175 @default.
- W4220689948 cites W2261059368 @default.
- W4220689948 cites W2270712421 @default.
- W4220689948 cites W2279625988 @default.
- W4220689948 cites W2328926982 @default.
- W4220689948 cites W2336442849 @default.
- W4220689948 cites W2339065801 @default.
- W4220689948 cites W2408143232 @default.
- W4220689948 cites W2408895021 @default.
- W4220689948 cites W2409759989 @default.
- W4220689948 cites W2473488799 @default.
- W4220689948 cites W2515306179 @default.
- W4220689948 cites W2524007939 @default.
- W4220689948 cites W2581388530 @default.
- W4220689948 cites W2599022140 @default.
- W4220689948 cites W2602458379 @default.
- W4220689948 cites W2606466198 @default.
- W4220689948 cites W2748857187 @default.
- W4220689948 cites W2752198373 @default.
- W4220689948 cites W2769616159 @default.
- W4220689948 cites W2772788231 @default.
- W4220689948 cites W2789860026 @default.
- W4220689948 cites W2802643674 @default.
- W4220689948 cites W2807855604 @default.
- W4220689948 cites W2810237059 @default.
- W4220689948 cites W2871665063 @default.
- W4220689948 cites W2884596954 @default.
- W4220689948 cites W2904280379 @default.
- W4220689948 cites W2911964244 @default.
- W4220689948 cites W2921401402 @default.
- W4220689948 cites W2946815544 @default.
- W4220689948 cites W2964287450 @default.
- W4220689948 cites W2969394118 @default.
- W4220689948 cites W2980526656 @default.
- W4220689948 cites W2985217858 @default.
- W4220689948 cites W2991362873 @default.
- W4220689948 cites W3000415744 @default.
- W4220689948 cites W3004201430 @default.
- W4220689948 cites W3006583835 @default.
- W4220689948 cites W3013004032 @default.
- W4220689948 cites W3013515824 @default.
- W4220689948 cites W3023126754 @default.
- W4220689948 cites W3026625556 @default.
- W4220689948 cites W3042767106 @default.
- W4220689948 cites W3046541421 @default.
- W4220689948 cites W3080135715 @default.
- W4220689948 cites W3080195726 @default.