Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220690725> ?p ?o ?g. }
- W4220690725 abstract "We developed a computational-based model for simulating adsorption capacity of a novel layered double hydroxide (LDH) and metal organic framework (MOF) nanocomposite in separation of ions including Pb(II) and Cd(II) from aqueous solutions. The simulated adsorbent was a composite of UiO-66-(Zr)-(COOH)2 MOF grown onto the surface of functionalized Ni50-Co50-LDH sheets. This novel adsorbent showed high surface area for adsorption capacity, and was chosen to develop the model for study of ions removal using this adsorbent. A number of measured data was collected and used in the simulations via the artificial intelligence technique. Artificial neural network (ANN) technique was used for simulation of the data in which ion type and initial concentration of the ions in the feed was selected as the input variables to the neural network. The neural network was trained using the input data for simulation of the adsorption capacity. Two hidden layers with activation functions in form of linear and non-linear were designed for the construction of artificial neural network. The model's training and validation revealed high accuracy with statistical parameters of R2 equal to 0.99 for the fitting data. The trained ANN modeling showed that increasing the initial content of Pb(II) and Cd(II) ions led to a significant increment in the adsorption capacity (Qe) and Cd(II) had higher adsorption due to its strong interaction with the adsorbent surface. The neural model indicated superior predictive capability in simulation of the obtained data for removal of Pb(II) and Cd(II) from an aqueous solution." @default.
- W4220690725 created "2022-04-03" @default.
- W4220690725 creator A5004222945 @default.
- W4220690725 creator A5030208235 @default.
- W4220690725 creator A5035406180 @default.
- W4220690725 creator A5043064682 @default.
- W4220690725 creator A5066552217 @default.
- W4220690725 creator A5070661342 @default.
- W4220690725 creator A5071954834 @default.
- W4220690725 creator A5076999759 @default.
- W4220690725 creator A5082983728 @default.
- W4220690725 date "2022-03-08" @default.
- W4220690725 modified "2023-09-26" @default.
- W4220690725 title "Neural-based modeling adsorption capacity of metal organic framework materials with application in wastewater treatment" @default.
- W4220690725 cites W2001635371 @default.
- W4220690725 cites W2022564271 @default.
- W4220690725 cites W2114510713 @default.
- W4220690725 cites W2280568346 @default.
- W4220690725 cites W2287440842 @default.
- W4220690725 cites W2295878371 @default.
- W4220690725 cites W2317272644 @default.
- W4220690725 cites W2404792861 @default.
- W4220690725 cites W2498987500 @default.
- W4220690725 cites W2508957622 @default.
- W4220690725 cites W2584226333 @default.
- W4220690725 cites W2738762230 @default.
- W4220690725 cites W2740777919 @default.
- W4220690725 cites W2779801055 @default.
- W4220690725 cites W2796330671 @default.
- W4220690725 cites W2803012599 @default.
- W4220690725 cites W2861129174 @default.
- W4220690725 cites W2885760021 @default.
- W4220690725 cites W2889190340 @default.
- W4220690725 cites W2898434516 @default.
- W4220690725 cites W2900402356 @default.
- W4220690725 cites W2901187575 @default.
- W4220690725 cites W2920719784 @default.
- W4220690725 cites W2921757690 @default.
- W4220690725 cites W2949583162 @default.
- W4220690725 cites W2956552923 @default.
- W4220690725 cites W2966280884 @default.
- W4220690725 cites W2970101273 @default.
- W4220690725 cites W2991097100 @default.
- W4220690725 cites W2996669499 @default.
- W4220690725 cites W2999191794 @default.
- W4220690725 cites W3009683805 @default.
- W4220690725 cites W3011876673 @default.
- W4220690725 cites W3014636062 @default.
- W4220690725 cites W3024240015 @default.
- W4220690725 cites W3037363382 @default.
- W4220690725 cites W3039668669 @default.
- W4220690725 cites W3047925581 @default.
- W4220690725 cites W3048170990 @default.
- W4220690725 cites W3049223340 @default.
- W4220690725 cites W3080536424 @default.
- W4220690725 cites W3081705507 @default.
- W4220690725 cites W3085135810 @default.
- W4220690725 cites W3087163905 @default.
- W4220690725 cites W3089955111 @default.
- W4220690725 cites W3090575552 @default.
- W4220690725 cites W3094523114 @default.
- W4220690725 cites W3096077326 @default.
- W4220690725 cites W3099996983 @default.
- W4220690725 cites W3106919328 @default.
- W4220690725 cites W3107557936 @default.
- W4220690725 cites W3109434334 @default.
- W4220690725 cites W3109756910 @default.
- W4220690725 cites W3110935754 @default.
- W4220690725 cites W3118659287 @default.
- W4220690725 cites W3119787182 @default.
- W4220690725 cites W3122421473 @default.
- W4220690725 cites W3123774274 @default.
- W4220690725 cites W3125033592 @default.
- W4220690725 cites W3125730585 @default.
- W4220690725 cites W3127395333 @default.
- W4220690725 cites W3128851252 @default.
- W4220690725 cites W3129021328 @default.
- W4220690725 cites W3157149188 @default.
- W4220690725 cites W3164176720 @default.
- W4220690725 cites W3164314085 @default.
- W4220690725 cites W3168307765 @default.
- W4220690725 cites W3172300706 @default.
- W4220690725 cites W3185791626 @default.
- W4220690725 cites W3194203979 @default.
- W4220690725 cites W3199859688 @default.
- W4220690725 cites W3201695212 @default.
- W4220690725 cites W3201967790 @default.
- W4220690725 cites W3207862775 @default.
- W4220690725 cites W4200303692 @default.
- W4220690725 cites W604621190 @default.
- W4220690725 cites W3115637794 @default.
- W4220690725 doi "https://doi.org/10.1038/s41598-022-08171-7" @default.
- W4220690725 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35260785" @default.
- W4220690725 hasPublicationYear "2022" @default.
- W4220690725 type Work @default.
- W4220690725 citedByCount "6" @default.
- W4220690725 countsByYear W42206907252022 @default.
- W4220690725 countsByYear W42206907252023 @default.
- W4220690725 crossrefType "journal-article" @default.
- W4220690725 hasAuthorship W4220690725A5004222945 @default.