Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220691472> ?p ?o ?g. }
- W4220691472 endingPage "15" @default.
- W4220691472 startingPage "1" @default.
- W4220691472 abstract "A new method for the determination of oil and water flow rates in vertical upward oil-water two-phase pipe flows has been proposed. This method consists of an application of machine learning techniques on the probability density function (PDF) and the power spectral density (PSD) of the power spectrum output of an ultrasonic Doppler sensor in the pipe. The power spectrum characteristic parameters of the two-phase flow are first determined by the probability density function (PDF) method. Then, the transducer signal is preprocessed by distance correlation analysis (DCA), and independent features are extracted by principal component analysis (PCA). The extracted features are used as input to a least-squares fit, which gave the oil flow rates as output. In the same way, the transducer signal is also preprocessed by partial correlation analysis (PCA), and independent features were extracted using independent component analysis (ICA). The extracted features were used as inputs to multilayer back-propagation neural networks, which water cuts as output. The present method was used to calibrate an ultrasonic Doppler sensor to estimate the flow rates of both phases in oil–water flow in a vertical pipe of diameter 159 mm. Predictions of the present method were in good agreement with direct flow rate measurements. Compared to previously used methods of feature extraction from the ultrasonic Doppler power spectrum signals, the present method provides a theoretical basis for the interpretation of ultrasonic multiphase flow logging data. Ultrasonic multiphase flow logging has potential application value in the production profile logging and interpretation evaluation of production wells with low fluid production and high water cut." @default.
- W4220691472 created "2022-04-03" @default.
- W4220691472 creator A5016633765 @default.
- W4220691472 creator A5021384155 @default.
- W4220691472 creator A5025957195 @default.
- W4220691472 creator A5029230534 @default.
- W4220691472 creator A5039370216 @default.
- W4220691472 creator A5056522797 @default.
- W4220691472 creator A5065358354 @default.
- W4220691472 date "2022-03-15" @default.
- W4220691472 modified "2023-10-18" @default.
- W4220691472 title "Data-Driven Methodology for the Prediction of Fluid Flow in Ultrasonic Production Logging Data Processing" @default.
- W4220691472 cites W1984563279 @default.
- W4220691472 cites W1999653191 @default.
- W4220691472 cites W2015842136 @default.
- W4220691472 cites W2026379084 @default.
- W4220691472 cites W2027038814 @default.
- W4220691472 cites W2031179271 @default.
- W4220691472 cites W2045920571 @default.
- W4220691472 cites W2046483294 @default.
- W4220691472 cites W2071128523 @default.
- W4220691472 cites W2125797575 @default.
- W4220691472 cites W2270708757 @default.
- W4220691472 cites W2294798173 @default.
- W4220691472 cites W2295124130 @default.
- W4220691472 cites W2307267906 @default.
- W4220691472 cites W2342266135 @default.
- W4220691472 cites W3198665300 @default.
- W4220691472 cites W3201003397 @default.
- W4220691472 doi "https://doi.org/10.1155/2022/5637971" @default.
- W4220691472 hasPublicationYear "2022" @default.
- W4220691472 type Work @default.
- W4220691472 citedByCount "0" @default.
- W4220691472 crossrefType "journal-article" @default.
- W4220691472 hasAuthorship W4220691472A5016633765 @default.
- W4220691472 hasAuthorship W4220691472A5021384155 @default.
- W4220691472 hasAuthorship W4220691472A5025957195 @default.
- W4220691472 hasAuthorship W4220691472A5029230534 @default.
- W4220691472 hasAuthorship W4220691472A5039370216 @default.
- W4220691472 hasAuthorship W4220691472A5056522797 @default.
- W4220691472 hasAuthorship W4220691472A5065358354 @default.
- W4220691472 hasBestOaLocation W42206914721 @default.
- W4220691472 hasConcept C105795698 @default.
- W4220691472 hasConcept C121332964 @default.
- W4220691472 hasConcept C1276947 @default.
- W4220691472 hasConcept C142757262 @default.
- W4220691472 hasConcept C154945302 @default.
- W4220691472 hasConcept C16302685 @default.
- W4220691472 hasConcept C168110828 @default.
- W4220691472 hasConcept C172120300 @default.
- W4220691472 hasConcept C186370098 @default.
- W4220691472 hasConcept C199360897 @default.
- W4220691472 hasConcept C24890656 @default.
- W4220691472 hasConcept C25570617 @default.
- W4220691472 hasConcept C27438332 @default.
- W4220691472 hasConcept C2779379648 @default.
- W4220691472 hasConcept C2779843651 @default.
- W4220691472 hasConcept C33923547 @default.
- W4220691472 hasConcept C38349280 @default.
- W4220691472 hasConcept C41008148 @default.
- W4220691472 hasConcept C51432778 @default.
- W4220691472 hasConcept C56318395 @default.
- W4220691472 hasConcept C57879066 @default.
- W4220691472 hasConcept C81288441 @default.
- W4220691472 hasConceptScore W4220691472C105795698 @default.
- W4220691472 hasConceptScore W4220691472C121332964 @default.
- W4220691472 hasConceptScore W4220691472C1276947 @default.
- W4220691472 hasConceptScore W4220691472C142757262 @default.
- W4220691472 hasConceptScore W4220691472C154945302 @default.
- W4220691472 hasConceptScore W4220691472C16302685 @default.
- W4220691472 hasConceptScore W4220691472C168110828 @default.
- W4220691472 hasConceptScore W4220691472C172120300 @default.
- W4220691472 hasConceptScore W4220691472C186370098 @default.
- W4220691472 hasConceptScore W4220691472C199360897 @default.
- W4220691472 hasConceptScore W4220691472C24890656 @default.
- W4220691472 hasConceptScore W4220691472C25570617 @default.
- W4220691472 hasConceptScore W4220691472C27438332 @default.
- W4220691472 hasConceptScore W4220691472C2779379648 @default.
- W4220691472 hasConceptScore W4220691472C2779843651 @default.
- W4220691472 hasConceptScore W4220691472C33923547 @default.
- W4220691472 hasConceptScore W4220691472C38349280 @default.
- W4220691472 hasConceptScore W4220691472C41008148 @default.
- W4220691472 hasConceptScore W4220691472C51432778 @default.
- W4220691472 hasConceptScore W4220691472C56318395 @default.
- W4220691472 hasConceptScore W4220691472C57879066 @default.
- W4220691472 hasConceptScore W4220691472C81288441 @default.
- W4220691472 hasFunder F4320321001 @default.
- W4220691472 hasLocation W42206914721 @default.
- W4220691472 hasOpenAccess W4220691472 @default.
- W4220691472 hasPrimaryLocation W42206914721 @default.
- W4220691472 hasRelatedWork W1647992415 @default.
- W4220691472 hasRelatedWork W2030264254 @default.
- W4220691472 hasRelatedWork W2039083551 @default.
- W4220691472 hasRelatedWork W2137937466 @default.
- W4220691472 hasRelatedWork W2275506233 @default.
- W4220691472 hasRelatedWork W2308035102 @default.
- W4220691472 hasRelatedWork W2390247979 @default.
- W4220691472 hasRelatedWork W3215753468 @default.